cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235866 G-cyclic numbers: numbers n such that gcd(n,A060968(n))=1.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 35, 37, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 97, 101, 103, 105, 107, 109, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 159, 161
Offset: 1

Views

Author

Keywords

Comments

From Robert Israel, May 01 2020: (Start)
All terms are odd and squarefree.
Contains all odd primes.
If n is a member, then so are all divisors of n.
(End)

Crossrefs

Programs

  • Maple
    g:= proc(p,e) if p=2 or e > 1 then 0
      elif p mod 4 = 1 then p-1 else p+1 fi
    end proc:
    h:= proc(n) mul(g(t[1],t[2]),t=ifactors(n)[2]) end proc:
    select(n -> igcd(n,h(n))=1, [seq(i,i=1..2000,2)]); # Robert Israel, May 01 2020
  • Mathematica
    fa=FactorInteger; phi[1]=1;phi[p_, s_] := Which[Mod[p, 4] == 1, p^(s-1)*(p-1), Mod[p, 4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}]; Select[Range[1000], GCD[phi[#], #] == 1 &]
  • PARI
    genit(maxx)={arr=List(); for(ptr=1, maxx, if(gcd(ptr,A060968(ptr))==1, listput(arr,ptr))); arr}
    \\******** following code taken from A060968
    A060968(n)={my(f=factor(n)[,1]); q=n*prod(i=if(n%2,1,2),#f,if(f[i]%4==1,1-1/f[i],1+1/f[i]))*if(n%4,1,2);return(q);} \\ Bill McEachen, Jul 16 2021