cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A235863 Exponent of the multiplicative group G_n:={x+iy: x^2+y^2==1 (mod n); 0 <= x,y < n} where i=sqrt(-1).

Original entry on oeis.org

1, 2, 4, 4, 4, 4, 8, 4, 12, 4, 12, 4, 12, 8, 4, 4, 16, 12, 20, 4, 8, 12, 24, 4, 20, 12, 36, 8, 28, 4, 32, 8, 12, 16, 8, 12, 36, 20, 12, 4, 40, 8, 44, 12, 12, 24, 48, 4, 56, 20, 16, 12, 52, 36, 12, 8, 20, 28, 60, 4, 60, 32, 24, 16, 12, 12, 68, 16, 24, 8, 72
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Nov 05 2019: (Start)
Exponent of the group G is the least e > 0 such that x^e = 1 for every x in G, where 1 is the identity element.
Also the exponent of O(2,Z_n) or SO(2,Z_n). O(2,Z_n) is the group of 2 X 2 matrices A over Z_n such that A*A^T = E = [1,0;0,1]; SO(2,Z_n) is the group of 2 X 2 matrices A over Z_n such that A*A^T = E = [1,0;0,1] and det(A) = 1. Note that G_n is isomorphic to SO(2,Z_n) by the mapping x+yi <-> [x,y;-y,x]. See A060698 for the group structure of SO(2,Z_n) and A182039 for the group structure of O(2,Z_n). (End)

Crossrefs

(Z/nZ)* ------ G_n
Order: A000010 ------ A060968.
Exponent: A002322 ------ this sequence.
n-1 ------ A201629.
Carmichael/G-Carmichael numbers: A002997 ------ A235865.
Lehmer /G-Lehmer numbers: unknown ------ A235864.
Cyclic/G-cyclic numbers: A003277 ------ A235866.
n such that the group is cyclic: A033948 ------ A235868.

Programs

  • Mathematica
    fa=FactorInteger; lam[1]=1;lam[p_, s_] := Which[Mod[p, 4] == 3, p ^ (s - 1 ) (p + 1) , Mod[p, 4] == 1, p ^ (s - 1 ) (p - 1)  , s ≥ 5, 2 ^ (s - 2 ), s > 1, 4, s == 1, 2];lam[n_] := {aux = 1; Do[aux = LCM[aux, lam[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length[fa[n]]}]; aux}[[1]] ; Array[lam, 100]
  • PARI
    a(n)={my(f=factor(n)); lcm(vector(#f~, i, my([p,e]=f[i,]); if(p==2, 2^max(e-2, min(e,2)), p^(e-1)*if(p%4==1, p-1, p+1))))} \\ Andrew Howroyd, Aug 06 2018

Formula

a(2) = 2, a(4) = a(8) = a(16) = 4, a(2^e) = 2^(e-2) for e >= 5; a(p^e) = (p-1)*p^(e-1) if p == 1 (mod 4) and (p+1)*p^(e-1) if p == 1 (mod 4). - Jianing Song, Nov 05 2019
If gcd(n,m)=1 then a(nm) = lcm(a(n), a(m)).

A324873 a(n) = gcd(n, A060968(n)).

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 4, 1, 2, 1, 16, 1, 6, 1, 4, 1, 2, 1, 8, 5, 2, 9, 4, 1, 2, 1, 32, 3, 2, 1, 12, 1, 2, 3, 8, 1, 2, 1, 4, 3, 2, 1, 16, 7, 10, 1, 4, 1, 18, 1, 8, 1, 2, 1, 4, 1, 2, 3, 64, 1, 6, 1, 4, 3, 2, 1, 24, 1, 2, 5, 4, 1, 6, 1, 16, 27, 2, 1, 4, 1, 2, 1, 8, 1, 6, 1, 4, 1, 2, 5, 32, 1, 14, 9, 20, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, May 18 2019

Keywords

Crossrefs

Cf. A060968, A235866 (positions of ones).

Programs

  • PARI
    A060968(n) = { my(f=factor(n)[, 1]); n*prod(i=if(n%2, 1, 2), #f, if(f[i]%4==1, 1-1/f[i], 1+1/f[i]))*if(n%4, 1, 2); }; \\ From A060968
    A324873(n) = gcd(n,A060968(n));

Formula

a(n) = gcd(n, A060968(n)).

A235867 G-cyclic numbers k such that A060968(k)^A060968(k) <> 1 (mod k) and A235863(k)^A235863(k) <> 1 (mod k).

Original entry on oeis.org

77, 119, 133, 187, 217, 253, 287, 301, 319, 323, 341, 391, 399, 403, 407, 413, 437, 469, 517, 551, 553, 559, 583, 589, 623, 651, 667, 707, 713, 731, 737, 749, 779, 781, 803, 817, 851, 869, 871, 889, 893, 899, 903, 913, 917, 935, 943, 959, 969, 1001, 1003
Offset: 1

Views

Author

Keywords

Comments

For G-cyclic numbers see A235866.
All terms are composite. - Bill McEachen, Jul 16 2021

Crossrefs

Programs

  • PARI
    genit(maxx)={arr2=List();arr=List();for(ptr=1,maxx,if( gcd(ptr,A060968(ptr))==1,listput(arr,ptr)));for(ptr=2,#arr,n=arr[ptr];a=A060968(n)^A060968(n);b=A235863(n)^A235863(n);if(a%n!=1&&b%n!=1,listput(arr2,n)));}
    A060968(n)={my(f=factor(n)[,1]);q=n*prod(i=if(n%2,1,2),#f,if(f[i]%4==1,1-1/f[i],1+1/f[i]))*if(n%4,1,2);return(q);} \\taken from that sequence
    A235863(n)={my(f=factor(n));q=lcm(vector(#f~,i,my([p,e]=f[i,]);if(p==2,2^max(e-2,min(e,2)),p^(e-1)*if(p%4==1,p-1,p+1))));return (q);} \\taken from that sequence
    \\ Bill McEachen, Jul 16 2021
Showing 1-3 of 3 results.