A235863 Exponent of the multiplicative group G_n:={x+iy: x^2+y^2==1 (mod n); 0 <= x,y < n} where i=sqrt(-1).
1, 2, 4, 4, 4, 4, 8, 4, 12, 4, 12, 4, 12, 8, 4, 4, 16, 12, 20, 4, 8, 12, 24, 4, 20, 12, 36, 8, 28, 4, 32, 8, 12, 16, 8, 12, 36, 20, 12, 4, 40, 8, 44, 12, 12, 24, 48, 4, 56, 20, 16, 12, 52, 36, 12, 8, 20, 28, 60, 4, 60, 32, 24, 16, 12, 12, 68, 16, 24, 8, 72
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
- José María Grau, A. M. Oller-Marcén, Manuel Rodriguez and Daniel Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, arXiv:1401.4708 [math.NT], 2014.
- José María Grau, A. M. Oller-Marcén, Manuel Rodriguez and Daniel Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, Czechoslovak Mathematical Journal 65(140), (2015) pp. 969-982.
Crossrefs
Programs
-
Mathematica
fa=FactorInteger; lam[1]=1;lam[p_, s_] := Which[Mod[p, 4] == 3, p ^ (s - 1 ) (p + 1) , Mod[p, 4] == 1, p ^ (s - 1 ) (p - 1) , s ≥ 5, 2 ^ (s - 2 ), s > 1, 4, s == 1, 2];lam[n_] := {aux = 1; Do[aux = LCM[aux, lam[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length[fa[n]]}]; aux}[[1]] ; Array[lam, 100]
-
PARI
a(n)={my(f=factor(n)); lcm(vector(#f~, i, my([p,e]=f[i,]); if(p==2, 2^max(e-2, min(e,2)), p^(e-1)*if(p%4==1, p-1, p+1))))} \\ Andrew Howroyd, Aug 06 2018
Formula
a(2) = 2, a(4) = a(8) = a(16) = 4, a(2^e) = 2^(e-2) for e >= 5; a(p^e) = (p-1)*p^(e-1) if p == 1 (mod 4) and (p+1)*p^(e-1) if p == 1 (mod 4). - Jianing Song, Nov 05 2019
If gcd(n,m)=1 then a(nm) = lcm(a(n), a(m)).
Comments