A235865
G-Carmichael numbers: Composite number such that A235863(n) divides A201629(n).
Original entry on oeis.org
4, 8, 12, 15, 16, 20, 24, 32, 36, 40, 48, 56, 60, 64, 72, 80, 96, 100, 105, 108, 112, 120, 128, 132, 143, 144, 156, 160, 168, 180, 192, 200, 216, 224, 240, 255, 256, 264, 272, 280, 288, 300, 312, 320, 324, 336, 360, 380, 384, 385, 392, 396, 399, 400, 432
Offset: 1
-
FU[n_] := Which[Mod[n, 4] == 3, n + 1, Mod[n, 4] == 1, n - 1, True, n]; fa = FactorInteger; lam[1] = 1; lam[p_,s_] := Which[Mod[p, 4] == 3, p^(s - 1) (p + 1), Mod[p, 4] == 1, p^(s - 1) (p - 1), s ≥ 5, 2^(s -2), s > 1, 4, s == 1, 2]; lam[n_] := {aux = 1; Do[aux = LCM[aux, lam[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length[fa[n]]}]; aux}[[1]];Select[1+Range[1000], ! PrimeQ[#] && IntegerQ[FU[#]/lam[#]] &]
-
ok(n)={my(f=factor(n), r=n-kronecker( -4, n)); for(i=1, #f~, my([p, e]=f[i, ]); my(t=if(p==2, 2^max(e-2, min(e, 2)), p^(e-1)*if(p%4==1, p-1, p+1))); if(r%t, return(0)) ); n>1 && !isprime(n)} \\ Andrew Howroyd, Aug 06 2018
A235867
G-cyclic numbers k such that A060968(k)^A060968(k) <> 1 (mod k) and A235863(k)^A235863(k) <> 1 (mod k).
Original entry on oeis.org
77, 119, 133, 187, 217, 253, 287, 301, 319, 323, 341, 391, 399, 403, 407, 413, 437, 469, 517, 551, 553, 559, 583, 589, 623, 651, 667, 707, 713, 731, 737, 749, 779, 781, 803, 817, 851, 869, 871, 889, 893, 899, 903, 913, 917, 935, 943, 959, 969, 1001, 1003
Offset: 1
-
genit(maxx)={arr2=List();arr=List();for(ptr=1,maxx,if( gcd(ptr,A060968(ptr))==1,listput(arr,ptr)));for(ptr=2,#arr,n=arr[ptr];a=A060968(n)^A060968(n);b=A235863(n)^A235863(n);if(a%n!=1&&b%n!=1,listput(arr2,n)));}
A060968(n)={my(f=factor(n)[,1]);q=n*prod(i=if(n%2,1,2),#f,if(f[i]%4==1,1-1/f[i],1+1/f[i]))*if(n%4,1,2);return(q);} \\taken from that sequence
A235863(n)={my(f=factor(n));q=lcm(vector(#f~,i,my([p,e]=f[i,]);if(p==2,2^max(e-2,min(e,2)),p^(e-1)*if(p%4==1,p-1,p+1))));return (q);} \\taken from that sequence
\\ Bill McEachen, Jul 16 2021
A060968
Number of solutions to x^2 + y^2 == 1 (mod n).
Original entry on oeis.org
1, 2, 4, 8, 4, 8, 8, 16, 12, 8, 12, 32, 12, 16, 16, 32, 16, 24, 20, 32, 32, 24, 24, 64, 20, 24, 36, 64, 28, 32, 32, 64, 48, 32, 32, 96, 36, 40, 48, 64, 40, 64, 44, 96, 48, 48, 48, 128, 56, 40, 64, 96, 52, 72, 48, 128, 80, 56, 60, 128, 60, 64, 96, 128, 48, 96, 68, 128, 96, 64, 72
Offset: 1
Ahmed Fares (ahmedfares(AT)my-deja.com), May 09 2001
a(3) = 4 because the 4 solutions are (0,1), (0,2), (1,0), (2,0).
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Jianing Song, Structure of the group SO(2,Z_n).
- László Tóth, Counting solutions of quadratic congruences in several variables revisited, arXiv preprint arXiv:1404.4214 [math.NT], 2014.
- László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
-
a060968 1 = 1
a060968 n = (if p == 2 then (if e == 1 then 2 else 2^(e+1)) else 1) *
(product $ zipWith (*) (map (\q -> q - 2 + mod q 4) ps'')
(zipWith (^) ps'' (map (subtract 1) es'')))
where (ps'', es'') = if p == 2 then (ps, es) else (ps', es')
ps'@(p:ps) = a027748_row n; es'@(e:es) = a124010_row n
-- Reinhard Zumkeller, Aug 05 2014
-
fa=FactorInteger; phi[p_,s_] := Which[Mod[p,4] == 1, p^(s-1)*(p-1), Mod[p,4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i,1]], fa[n][[i,2]]], {i, Length[fa[n]]}]; Table[phi[n], {n,1,100}]
-
a(n)=my(f=factor(n)[,1]);n*prod(i=if(n%2,1,2),#f,if(f[i]%4==1, 1-1/f[i], 1+1/f[i]))*if(n%4,1,2) \\ Charles R Greathouse IV, Apr 16 2012
A182039
Order of the group O(2,Z_n); number of orthogonal 2 X 2 matrices over the ring Z/nZ.
Original entry on oeis.org
1, 2, 8, 16, 8, 16, 16, 64, 24, 16, 24, 128, 24, 32, 64, 128, 32, 48, 40, 128, 128, 48, 48, 512, 40, 48, 72, 256, 56, 128, 64, 256, 192, 64, 128, 384, 72, 80, 192, 512, 80, 256, 88, 384, 192, 96, 96, 1024, 112, 80, 256, 384, 104, 144, 192, 1024, 320, 112, 120, 1024, 120, 128, 384, 512, 192, 384, 136, 512, 384, 256, 144, 1536
Offset: 1
a(1) = 1 because 1 = 0 in the zero ring, so although there only exists the zero matrix, it still equals the unit matrix.
O(2,Z_6) = {[0,1;5,0], [0,1;1,0], [0,5;1,0], [0,5;5,0], [1,0;0,1], [1,0;0,5], [2,3;3,2], [2,3;3,4], [3,2;4,3], [3,2;2,3], [3,4;2,3], [3,4;4,3], [4,3;3,4], [4,3;3,2], [5,0;0,5], [5,0;0,1]}, so a(6) = 16.
For n = 16, SO(2,Z_16) is generated by [9,0;0,9], [0,1;-1,0], and [4,1;-1,4] (see Jianing Song link in A060968), so O(2,Z_16) is generated by [-1,0;0,1], [9,0;0,1], [9,0;0,9], [0,1;-1,0], and [4,1;-1,4], which gives O(2,Z_16) is isomorphic to the semiproduct of C_2 X C_4 X C_4 and C_2 X C_2, so a(16) = 128.
-
gg[n_]:=gg[n]=Flatten[Table[{{x,y},{z,t}},{x,n},{y,n},{t,n},{z,n}],3];
orto[1]=1;
orto[n_]:=orto[n]=Length@gg[n][[Select[Range[Length[gg[n]]],Mod[gg[n][[#]].Transpose[gg[n][[#]]],n]=={{1,0},{0,1}}&]]];
Table[Print[orto[n]];orto[n],{n,1,22}]
-
a(n)=
{
my(r=1, f=factor(n));
for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
if(p==2 && e==1, r*=2);
if(p==2 && e==2, r*=16);
if(p==2 && e>=3, r*=2^(e+3));
if(p%4==1, r*=2*(p-1)*p^(e-1));
if(p%4==3, r*=2*(p+1)*p^(e-1));
);
return(r);
}
\\ Jianing Song, Nov 05 2019
A235864
G-Lehmer numbers: Composite numbers k such that A060968(k) divides A201629(k).
Original entry on oeis.org
15, 143, 255, 385, 3599, 5183, 11663, 32399, 34561, 36863, 51983, 57599, 65535, 97343, 121103, 147455, 176399, 186623, 195841, 359999, 435599, 685583, 1034881, 1040399, 1065023, 1192463, 1327103, 1742399, 2039183, 2108303, 2214143, 2585663, 2624399, 2782223, 3196943
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- José María Grau, Antonio M. Oller-Marcén, Manuel Rodríguez, and Daniel Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, Czechoslovak Mathematical Journal, Vol. 65 (2015), pp. 969-982; arXiv preprint, arXiv:1401.4708 [math.NT], 2014.
-
fa=FactorInteger; phi[p_, s_] := Which[Mod[p, 4] == 1, p^(s-1)*(p-1), Mod[p, 4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}]; Select[Range[1000], IntegerQ[FU[#]/phi[#]] && PrimeQ[#] == False &]
A235868
Union of 2 and powers of odd primes.
Original entry on oeis.org
1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229
Offset: 1
-
Select[ Range[230], # == 2 || Mod[#, 2] == 1 && PrimeNu[#] < 2 &] (* and modified by Robert G. Wilson v, Dec 29 2016 *)
Showing 1-6 of 6 results.
Comments