cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A235863 Exponent of the multiplicative group G_n:={x+iy: x^2+y^2==1 (mod n); 0 <= x,y < n} where i=sqrt(-1).

Original entry on oeis.org

1, 2, 4, 4, 4, 4, 8, 4, 12, 4, 12, 4, 12, 8, 4, 4, 16, 12, 20, 4, 8, 12, 24, 4, 20, 12, 36, 8, 28, 4, 32, 8, 12, 16, 8, 12, 36, 20, 12, 4, 40, 8, 44, 12, 12, 24, 48, 4, 56, 20, 16, 12, 52, 36, 12, 8, 20, 28, 60, 4, 60, 32, 24, 16, 12, 12, 68, 16, 24, 8, 72
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Nov 05 2019: (Start)
Exponent of the group G is the least e > 0 such that x^e = 1 for every x in G, where 1 is the identity element.
Also the exponent of O(2,Z_n) or SO(2,Z_n). O(2,Z_n) is the group of 2 X 2 matrices A over Z_n such that A*A^T = E = [1,0;0,1]; SO(2,Z_n) is the group of 2 X 2 matrices A over Z_n such that A*A^T = E = [1,0;0,1] and det(A) = 1. Note that G_n is isomorphic to SO(2,Z_n) by the mapping x+yi <-> [x,y;-y,x]. See A060698 for the group structure of SO(2,Z_n) and A182039 for the group structure of O(2,Z_n). (End)

Crossrefs

(Z/nZ)* ------ G_n
Order: A000010 ------ A060968.
Exponent: A002322 ------ this sequence.
n-1 ------ A201629.
Carmichael/G-Carmichael numbers: A002997 ------ A235865.
Lehmer /G-Lehmer numbers: unknown ------ A235864.
Cyclic/G-cyclic numbers: A003277 ------ A235866.
n such that the group is cyclic: A033948 ------ A235868.

Programs

  • Mathematica
    fa=FactorInteger; lam[1]=1;lam[p_, s_] := Which[Mod[p, 4] == 3, p ^ (s - 1 ) (p + 1) , Mod[p, 4] == 1, p ^ (s - 1 ) (p - 1)  , s ≥ 5, 2 ^ (s - 2 ), s > 1, 4, s == 1, 2];lam[n_] := {aux = 1; Do[aux = LCM[aux, lam[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length[fa[n]]}]; aux}[[1]] ; Array[lam, 100]
  • PARI
    a(n)={my(f=factor(n)); lcm(vector(#f~, i, my([p,e]=f[i,]); if(p==2, 2^max(e-2, min(e,2)), p^(e-1)*if(p%4==1, p-1, p+1))))} \\ Andrew Howroyd, Aug 06 2018

Formula

a(2) = 2, a(4) = a(8) = a(16) = 4, a(2^e) = 2^(e-2) for e >= 5; a(p^e) = (p-1)*p^(e-1) if p == 1 (mod 4) and (p+1)*p^(e-1) if p == 1 (mod 4). - Jianing Song, Nov 05 2019
If gcd(n,m)=1 then a(nm) = lcm(a(n), a(m)).

A100836 a(n) is the smallest value k > 1 such that k^2 - 1 is divisible by n^2.

Original entry on oeis.org

2, 3, 8, 7, 24, 17, 48, 31, 80, 49, 120, 17, 168, 97, 26, 127, 288, 161, 360, 49, 197, 241, 528, 127, 624, 337, 728, 97, 840, 199, 960, 511, 485, 577, 99, 161, 1368, 721, 170, 351, 1680, 197, 1848, 241, 649, 1057, 2208, 127, 2400, 1249, 577, 337, 2808, 1457, 1451
Offset: 1

Views

Author

Thomas Kerscher (Thomas.Kerscher(AT)web.de), Jan 19 2005

Keywords

Comments

a(n) = n^2 - 1 if n > 1 is in A235868. - Robert Israel, Jan 17 2019

Examples

			a(4)=7 because 7^2 - 1 is divisible by 4^2 (and 7 is the smallest integer > 1 that satisfies this criterion).
		

Crossrefs

Cf. A235868.

Programs

  • Maple
    f:= n -> min(map(t -> rhs(op(t)),{msolve(k^2-1,n^2)}) minus {1}):
    f(1):= 2:
    map(f, [$1..100]); # Robert Israel, Jan 17 2019
  • Mathematica
    With[{c=Range[2,10000]},Flatten[Table[Select[c,Divisible[#^2-1, n^2]&, 1],{n,60}]]] (* Harvey P. Dale, Oct 23 2011 *)
  • PARI
    { A100836(n)=local(f,b,t,m); if(n==1,return(1)); if(n==2,return(3));t=valuation(n,2); if(n==2^t, return(2^(2*t-1)-1)); f=factorint(n/2^t);f=vector(matsize(f)[1],j,f[j,1]^(2*f[j,2])); if(t>0, f=concat(f,[2^(2*t-1)])); b=n^2+1; forvec(v=vector(#f,i,[0,1]), m=lift(chinese(vector(#f,j,Mod((-1)^v[j],f[j])))); if(m>1, b=min(b,m)); ); b } /* Max Alekseyev, Nov 21 2008 */

Extensions

Entries confirmed by Ray Chandler, R. J. Mathar, and Max Alekseyev, Nov 21 2008
Showing 1-2 of 2 results.