A236070 Primes p such that f(f(p)) is prime where f(x) = x^8 + 1.
7, 59, 163, 929, 977, 1373, 1549, 1619, 1913, 2113, 2593, 4397, 5417, 5651, 6397, 6659, 6833, 7351, 7793, 7883, 8641, 9719, 10091, 10477, 10949, 11243, 12239, 13441, 13457, 13691, 14753, 15349, 15467, 15971, 17747, 19051
Offset: 1
Keywords
Examples
1619 is prime and (1619^8+1)^8+1 is also prime.
Crossrefs
Cf. A235983.
Programs
-
Mathematica
Select[Prime[Range[2500]],PrimeQ[(#^8+1)^8+1]&] (* Harvey P. Dale, Dec 17 2022 *)
-
PARI
isok(p) = isprime(p) && (q = p^8+1) && isprime(q^8+1); \\ Michel Marcus, Jan 19 2014
-
Python
import sympy from sympy import isprime {print(p) for p in range(10**5) if isprime(p) and isprime((p**8+1)**8+1)}
Formula
a(n) = (A235983(n)-1)^(1/8).