cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236108 Nonprimes whose proper divisors are partition numbers.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 33, 35, 49, 55, 77, 121, 202, 303, 505, 707, 1111, 10201, 35954, 53931, 89885, 125839, 197747, 1815677, 21239726, 31859589, 53099315, 74339041, 116818493, 323172529, 1072606163, 13241661778, 19862492667, 33104154445, 46345816223, 72829139779
Offset: 1

Views

Author

Omar E. Pol, Jan 22 2014

Keywords

Comments

Known terms are squares of A049575 or products of 2 distinct terms of A049575. - Michel Marcus, Jan 25 2023
This conjecture holds for terms <= 10^16. - David A. Corneth, Jan 25 2023

Examples

			10 is in the sequence because 10 is a nonprime number and the proper divisors of 10 are 1, 2, 5, which are also partition numbers.
		

Crossrefs

Programs

  • Maple
    isA000041 := proc(n)
        local k,P;
        for k from 1 do
            P := combinat[numbpart](k) ;
            if P > n then
                return false;
            elif P = n then
                return true ;
            end if;
        end do:
    end proc:
    isA236108 := proc(n)
        local pdvs,d ;
        if n =1 or isprime(n) then
            return false;
        end if;
        pdvs := numtheory[divisors](n) minus {n} ;
        for d in pdvs do
            if not isA000041(d) then
                return false;
            end if;
        end do:
        return true;
    end proc:
    for n from 1 to 300000 do
        if isA236108(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 29 2014
  • Mathematica
    partitionNumbers = Table[PartitionsP[n], {n, 1, 1000}];
    Select[Range[2, 10000],
     If[! PrimeQ[#],
    ContainsOnly[Divisors[#][[2 ;; -2]], partitionNumbers]] &] (* Julien Kluge, Dec 03 2016 *)

Extensions

a(17)-a(26) from R. J. Mathar, Jan 29 2014
a(27)-a(32) from Jon E. Schoenfield, Feb 05 2014
a(33)-a(34) from Michel Marcus, Jan 24 2023
More terms from David A. Corneth, Jan 25 2023