A236108 Nonprimes whose proper divisors are partition numbers.
4, 6, 9, 10, 14, 15, 21, 22, 25, 33, 35, 49, 55, 77, 121, 202, 303, 505, 707, 1111, 10201, 35954, 53931, 89885, 125839, 197747, 1815677, 21239726, 31859589, 53099315, 74339041, 116818493, 323172529, 1072606163, 13241661778, 19862492667, 33104154445, 46345816223, 72829139779
Offset: 1
Keywords
Examples
10 is in the sequence because 10 is a nonprime number and the proper divisors of 10 are 1, 2, 5, which are also partition numbers.
Links
- David A. Corneth, Table of n, a(n) for n = 1..81
Programs
-
Maple
isA000041 := proc(n) local k,P; for k from 1 do P := combinat[numbpart](k) ; if P > n then return false; elif P = n then return true ; end if; end do: end proc: isA236108 := proc(n) local pdvs,d ; if n =1 or isprime(n) then return false; end if; pdvs := numtheory[divisors](n) minus {n} ; for d in pdvs do if not isA000041(d) then return false; end if; end do: return true; end proc: for n from 1 to 300000 do if isA236108(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jan 29 2014
-
Mathematica
partitionNumbers = Table[PartitionsP[n], {n, 1, 1000}]; Select[Range[2, 10000], If[! PrimeQ[#], ContainsOnly[Divisors[#][[2 ;; -2]], partitionNumbers]] &] (* Julien Kluge, Dec 03 2016 *)
Extensions
a(17)-a(26) from R. J. Mathar, Jan 29 2014
a(27)-a(32) from Jon E. Schoenfield, Feb 05 2014
a(33)-a(34) from Michel Marcus, Jan 24 2023
More terms from David A. Corneth, Jan 25 2023
Comments