cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236165 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = a(1) = 1, a(2) = 0.

Original entry on oeis.org

1, 1, 0, 0, 2, 3, 3, 5, 10, 16, 24, 39, 65, 105, 168, 272, 442, 715, 1155, 1869, 3026, 4896, 7920, 12815, 20737, 33553, 54288, 87840, 142130, 229971, 372099, 602069, 974170, 1576240, 2550408, 4126647, 6677057, 10803705, 17480760, 28284464, 45765226, 74049691
Offset: 0

Views

Author

Michael Somos, Jan 19 2014

Keywords

Examples

			G.f. = 1 + x + 2*x^4 + 3*x^5 + 3*x^6 + 5*x^7 + 10*x^8 + 16*x^9 + ...
		

Crossrefs

Programs

  • Magma
    I:=[1,1,0,0]; [n le 4 select I[n] else Self(n-1)+Self(n-3)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 20 2015
  • Mathematica
    a[ n_] := Fibonacci[ Quotient[ n, 2] - 1] Fibonacci[ Quotient[ n, 2] + 1 + Mod[n, 2]];
    LinearRecurrence[{1,0,1,1},{1,1,0,0},50] (* Harvey P. Dale, Jan 19 2015 *)
    CoefficientList[Series[(1 - x^2 - x^3) / (1 - x - x^3 - x^4), {x, 0, 70}], x] (* Vincenzo Librandi, Jan 20 2015 *)
  • PARI
    {a(n) = fibonacci( n\2 - 1 ) * fibonacci( n\2 + 1 + n%2 )};
    

Formula

G.f.: (1 - x^2 - x^3) / (1 - x - x^3 - x^4).
a(n+1)*a(n+3) = a(n)*a(n+2) + a(n+1)*a(n+2) for all n in Z.
a(n+1) + a(n-1) = A000045(n) for all n in Z.
a(2n) = A059929(n-1), a(2n-1) = A226205(n).