cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A248223 Decimal expansion of (4/45)*Pi^3.

Original entry on oeis.org

2, 7, 5, 6, 1, 1, 3, 4, 8, 2, 6, 9, 3, 3, 1, 7, 3, 4, 8, 9, 3, 1, 2, 2, 8, 0, 0, 5, 9, 6, 4, 5, 6, 8, 4, 6, 2, 4, 2, 0, 0, 2, 5, 6, 5, 0, 3, 0, 0, 8, 9, 8, 4, 6, 1, 7, 0, 1, 7, 3, 6, 7, 2, 0, 3, 3, 8, 3, 4, 6, 2, 1, 4, 8, 8, 5, 8, 4, 0, 5, 3, 6, 6, 7, 2, 5, 9, 5, 6, 4, 7, 3, 4, 2, 4, 7, 8, 7, 7, 2, 7, 1, 3, 7, 8
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 04 2014

Keywords

Comments

The constant plays a role in the flatness problem.

Examples

			2.756113482693317348931228005964568462420025650300898461701736720338346...
		

Crossrefs

Programs

  • Magma
    n:=4/45*Pi(RealField(105))^3; Reverse(Intseq(Floor(10^104*n)));
    
  • Mathematica
    RealDigits[N[4/45*Pi^3, 105]][[1]]
  • PARI
    default(realprecision, 105); x=4/45*Pi^3; for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", "));

A248224 Decimal expansion of (43/11)*(4*Pi^3/45)^(3/2).

Original entry on oeis.org

1, 7, 8, 8, 6, 3, 3, 7, 1, 9, 5, 7, 3, 5, 6, 8, 6, 7, 3, 9, 5, 0, 2, 3, 6, 1, 2, 3, 2, 2, 9, 6, 0, 6, 9, 6, 0, 9, 5, 6, 8, 9, 0, 3, 5, 1, 8, 2, 4, 0, 3, 7, 2, 4, 5, 5, 4, 4, 0, 3, 2, 8, 1, 2, 5, 9, 1, 0, 0, 1, 5, 8, 3, 4, 0, 9, 6, 8, 8, 9, 1, 2, 9, 7, 1, 5, 0, 5, 9, 0, 8, 6, 3, 3, 3, 5, 3, 9, 3, 6, 6, 5, 8, 3, 6
Offset: 2

Views

Author

Arkadiusz Wesolowski, Oct 04 2014

Keywords

Comments

The constant plays a role in the horizon problem.
The early universe could contain at least (this constant)/M(p)^3*10^139 ~ 10^83 "separate regions that are causally disconnected", M(p) is the Planck mass energy ~ 1.22*10^19 GeV (see Alan H. Guth paper).

Examples

			17.88633719573568673950236123229606960956890351824037245544032812591001...
		

References

  • A. J. Kox and Jean Eisenstaedt, The Universe of General Relativity (Einstein Studies), Birkhäuser, 2005, pp. 241-244.

Crossrefs

Programs

  • Magma
    n:=43/11*(4/45*Pi(RealField(104))^3)^(3/2); Reverse(Intseq(Floor(10^103*n)));
    
  • Mathematica
    RealDigits[N[43/11*(4/45*Pi^3)^(3/2), 105]][[1]]
  • PARI
    default(realprecision, 105); x=43/110*(4/45*Pi^3)^(3/2); for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", "));

Formula

g(*)(T(gamma)) * A248223^(3/2), where g(*)(T(gamma)) = 2 + 7/8*6*4/11 = 43/11.
Showing 1-2 of 2 results.