A236339 Association types in 2-dimensional algebra.
1, 2, 8, 39, 212, 1232, 7492, 47082, 303336, 1992826, 13299624, 89912992, 614474252, 4238138216, 29463047072, 206234876287, 1452319244772, 10281935334928, 73138728191724, 522475643860940, 3746698673538480, 26961197787989220, 194626504416928080
Offset: 1
References
- J.-L. Loday and B. Vallette, Algebraic Operads, Grundlehren 346, Springer, 2012, section 13.10.4, page 544 (for the interchange law)
- S. Mac Lane, Categories for the Working Mathematician, second edition, Springer, 1978, equation (5), page 43 (also for the interchange law).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- Yu Hin (Gary) Au, Fatemeh Bagherzadeh, Murray R. Bremner, Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube, arXiv:1903.00813 [math.CO], Mar 03 2019.
- Murray R. Bremner, Diagrams representing 2-dimensional Catalan numbers for n = 2,3,4,5
- Murray Bremner, Sara Madariaga, Permutation of elements in double semigroups, arXiv:1405.2889 [math.RA], 2014-2015.
- Murray Bremner, Sara Madariaga, Permutation of elements in double semigroups, Semigroup Forum 92 (2016), no. 2, 335--360. MR3472020.
- Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
Programs
-
Maple
c := table(): c[1] := 1: printf( "\n" ): for n from 2 to 50 do c[n] := 0: for ij in combinat[composition](n,2) do c[n] := c[n] + 2*c[ij[1]]*c[ij[2]] od: for ijkl in combinat[composition](n,4) do c[n] := c[n] - c[ijkl[1]]*c[ijkl[2]]*c[ijkl[3]]*c[ijkl[4]] od: printf( "%2d %d \n", n, c[n] ) od: # second Maple program: a:= proc(n) option remember; `if`(n<3, n, ( 8*(2*n-5)*(148*n-243)*(4*n-13)*(4*n-11)*a(n-3) +16*(n-2)*(4736*n^3-31456*n^2+68444*n-48609)*a(n-2) -32*(n-1)*(n-2)*(148*n^2-613*n+594)*a(n-1)) / (5*n*(n-1)*(n-2)*(148*n-391))) end: seq(a(n), n=0..25); # Alois P. Heinz, Jan 22 2014
-
Mathematica
max = 30; c[1] = 1; c[2] = 2; g = Sum[c[k]*x^k, {k, 1, max}]; eq = Take[Thread[CoefficientList[g^4 - 2*g^2 + g - x, x] == 0], max+1]; sol = Solve[eq] // First; Array[c, max] /. sol (* Jean-François Alcover, Jan 27 2014 *) Rest[CoefficientList[InverseSeries[Series[x^4-2*x^2+x, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Feb 16 2014 *)
Formula
Recurrence relation:
C(1) = 1,
C(n) = 2 Sum_{i,j} C(i)C(j) - Sum_{i,j,k,l} C(i)C(j)C(k)C(l).
The first sum is over all 2-compositions of n into positive integers (i+j=n), and the second sum is over all 4-compositions of n into positive integers (i+j+k+l=n).
Generating function G(x) = Sum_{n>=1} C(n) x^n satisfies a quartic polynomial equation: G(x)^4 - 2*G(x)^2 + G(x) - x = 0.
a(n) ~ (1/r)^(n-1/2) / (2 * sqrt(2*Pi*(1-3*s^2)) * n^(3/2)), where s = 0.2695944364054445582... is the root of the equation 4*s*(1-s^2) = 1, and r = s*(1-2*s+s^3) = 0.1295146671633141285... - Vaclav Kotesovec, Feb 16 2014
From Seiichi Manyama, Jan 10 2023: (Start)
G.f.: Series_Reversion( x * (1-x) * (1-x-x^2) ).
a(n+1) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(3*n-k+1,n-2*k). (End)
Extensions
a(17)-a(23) from Alois P. Heinz, Jan 22 2014
Comments