A236348 Expansion of (1 - x + 2*x^2 + x^3) / ((1 - x) * (1 - x^3)) in powers of x.
1, 0, 2, 4, 3, 5, 7, 6, 8, 10, 9, 11, 13, 12, 14, 16, 15, 17, 19, 18, 20, 22, 21, 23, 25, 24, 26, 28, 27, 29, 31, 30, 32, 34, 33, 35, 37, 36, 38, 40, 39, 41, 43, 42, 44, 46, 45, 47, 49, 48, 50, 52, 51, 53, 55, 54, 56, 58, 57, 59, 61, 60, 62, 64, 63, 65, 67
Offset: 0
Examples
G.f. = 1 + 2*x^2 + 4*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 6*x^7 + 8*x^8 + 10*x^9 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Cf. A143097.
Programs
-
Magma
[n-1+((n-1) mod 3) : n in [0..100]]; // Wesley Ivan Hurt, Aug 21 2014
-
Magma
I:=[1,0,2,4]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Sep 28 2017
-
Mathematica
Table[n - 1 + Mod[n - 1, 3], {n, 0, 100}] (* Wesley Ivan Hurt, Aug 21 2014 *) LinearRecurrence[{1, 0, 1, -1}, {1, 0, 2, 4}, 80] (* or *) CoefficientList[Series[(1 - x + 2 x^2 + x^3) / ((1 - x) (1 -x^3)), {x, 0, 80}], x] (* Vincenzo Librandi, Sep 28 2017 *)
-
PARI
{a(n) = (n-1) % 3 + n-1 }
Formula
G.f.: (1 - x + 2*x^2 + x^3) / ((1 - x) * (1 - x^3)).
First difference is period 3 sequence [-1, 2, 2, ...].
a(n) = a(n-1) + a(n-3) - a(n-4). a(4-n) = 4-a(n).
0 = a(n)*(-a(n+1) + a(n+3)) + a(n+1)*(a(n+1) - a(n+2)) + a(n+2)*(a(n+2) - a(n+3)) for all n in Z.
a(n) = A143097(n) if n>1.
a(n) = n - 1 + mod(n-1, 3). - Wesley Ivan Hurt, Aug 21 2014
a(n) = n + (2/sqrt(3))*sin(2*(n+1)*Pi/3). - Wesley Ivan Hurt, Sep 26 2017
Sum_{n>=2} (-1)^n/a(n) = 2*Pi/(3*sqrt(3)) + log(2)/3 - 1. - Amiram Eldar, Sep 10 2023
Comments