cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236348 Expansion of (1 - x + 2*x^2 + x^3) / ((1 - x) * (1 - x^3)) in powers of x.

Original entry on oeis.org

1, 0, 2, 4, 3, 5, 7, 6, 8, 10, 9, 11, 13, 12, 14, 16, 15, 17, 19, 18, 20, 22, 21, 23, 25, 24, 26, 28, 27, 29, 31, 30, 32, 34, 33, 35, 37, 36, 38, 40, 39, 41, 43, 42, 44, 46, 45, 47, 49, 48, 50, 52, 51, 53, 55, 54, 56, 58, 57, 59, 61, 60, 62, 64, 63, 65, 67
Offset: 0

Views

Author

Michael Somos, Jan 23 2014

Keywords

Comments

An order 2 permutation of nonnegative integers.

Examples

			G.f. = 1 + 2*x^2 + 4*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 6*x^7 + 8*x^8 + 10*x^9 + ...
		

Crossrefs

Cf. A143097.

Programs

  • Magma
    [n-1+((n-1) mod 3) : n in [0..100]]; // Wesley Ivan Hurt, Aug 21 2014
    
  • Magma
    I:=[1,0,2,4]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Sep 28 2017
  • Mathematica
    Table[n - 1 + Mod[n - 1, 3], {n, 0, 100}] (* Wesley Ivan Hurt, Aug 21 2014 *)
    LinearRecurrence[{1, 0, 1, -1}, {1, 0, 2, 4}, 80] (* or *) CoefficientList[Series[(1 - x + 2 x^2 + x^3) / ((1 - x) (1 -x^3)), {x, 0, 80}], x] (* Vincenzo Librandi, Sep 28 2017 *)
  • PARI
    {a(n) = (n-1) % 3 + n-1 }
    

Formula

G.f.: (1 - x + 2*x^2 + x^3) / ((1 - x) * (1 - x^3)).
First difference is period 3 sequence [-1, 2, 2, ...].
a(n) = a(n-1) + a(n-3) - a(n-4). a(4-n) = 4-a(n).
0 = a(n)*(-a(n+1) + a(n+3)) + a(n+1)*(a(n+1) - a(n+2)) + a(n+2)*(a(n+2) - a(n+3)) for all n in Z.
a(n) = A143097(n) if n>1.
a(n) = n - 1 + mod(n-1, 3). - Wesley Ivan Hurt, Aug 21 2014
a(n) = n + (2/sqrt(3))*sin(2*(n+1)*Pi/3). - Wesley Ivan Hurt, Sep 26 2017
Sum_{n>=2} (-1)^n/a(n) = 2*Pi/(3*sqrt(3)) + log(2)/3 - 1. - Amiram Eldar, Sep 10 2023