A236395 a(n) = Fibonacci(p) mod p^2, where p = prime(n).
1, 2, 5, 13, 89, 64, 152, 210, 91, 378, 869, 443, 1641, 85, 1832, 2066, 296, 1465, 2009, 4474, 3211, 5057, 2572, 4184, 2909, 10000, 9475, 10164, 1418, 9378, 7238, 4193, 14795, 17793, 8941, 4531, 21194, 13528, 24214, 18683, 15574, 28237, 8978, 15632, 5515, 20299, 11817, 24529, 34049, 2062, 23765, 29159, 21932, 31376, 65791, 20776, 43848, 27101, 29638
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>, `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))): a:= n-> (q-> p(<<0|1>, <1|1>>, q, q^2)[1, 2])(ithprime(n)): seq(a(n), n=1..80); # Alois P. Heinz, Oct 10 2015
-
PARI
a(n) = my(p = prime(n)); fibonacci(p) % p^2; \\ Michel Marcus, Jan 29 2014