cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A132634 a(n) = Fibonacci(n) mod n^2.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 0, 64, 181, 160, 219, 152, 316, 210, 365, 362, 287, 91, 288, 25, 389, 317, 291, 378, 440, 869, 261, 574, 339, 765, 432, 443, 533, 1285, 1355, 1641, 1504, 85, 1741, 20, 551, 1832, 576, 1457, 1525, 389, 803, 2066, 332, 1820, 245
Offset: 1

Views

Author

Hieronymus Fischer, Aug 24 2007

Keywords

Comments

a(n)=0 for n=1 and n=12 only (conjecture).

Examples

			a(13) = 64, since Fibonacci(13) = 233 == 64 (mod 13^2).
		

Crossrefs

Programs

  • Maple
    p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
              `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
    a:= n-> p(<<0|1>, <1|1>>, n, n^2)[1, 2]:
    seq(a(n), n=1..80);
  • Mathematica
    Table[Mod[Fibonacci[n],n^2],{n,200}] (* Vladimir Joseph Stephan Orlovsky, Nov 28 2010 *)

A051831 a(n) = Fibonacci(prime(n)) mod prime(n), where prime(n) is the n-th prime.

Original entry on oeis.org

1, 2, 0, 6, 1, 12, 16, 1, 22, 1, 1, 36, 1, 42, 46, 52, 1, 1, 66, 1, 72, 1, 82, 1, 96, 1, 102, 106, 1, 112, 126, 1, 136, 1, 1, 1, 156, 162, 166, 172, 1, 1, 1, 192, 196, 1, 1, 222, 226, 1, 232, 1, 1, 1, 256, 262, 1, 1, 276, 1, 282, 292, 306, 1, 312, 316, 1, 336, 346, 1, 352, 1
Offset: 1

Views

Author

Jud McCranie, Dec 11 1999

Keywords

Comments

Terms are 1 when prime(n) == 1 or 4 mod 5, terms are prime(n)-1 when prime(n) == 2 or 3 mod 5.
In general, it appears that Fibonacci(k*p) mod p = Fibonacci(k) or p-Fibonacci(k) for prime p > Fibonacci(k). For example Fibonacci(8*29) mod 29 = 21. - Gary Detlefs, May 28 2014

Examples

			prime(3) = 5, fibonacci(5) = 5 == 0 mod 5.
		

Crossrefs

Programs

  • Maple
    p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
              `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
    a:= n-> p(<<0|1>, <1|1>>, ithprime(n)$2)[1, 2]:
    seq(a(n), n=1..80);  # Alois P. Heinz, Oct 10 2015
  • Mathematica
    Mod[Fibonacci[Prime[#]],Prime[#]]&/@Range[75] (* Harvey P. Dale, Jan 14 2011 *)
  • PARI
    vector(80, n, fibonacci(prime(n)) % prime(n)) \\ Michel Marcus, Jul 15 2015
Showing 1-2 of 2 results.