A236526 Numbers k such that k^3 + k +- 1 are twin primes.
3, 15, 18, 21, 39, 87, 117, 120, 135, 243, 360, 366, 381, 426, 429, 615, 642, 723, 879, 1002, 1023, 1170, 1173, 1224, 1458, 1506, 1518, 1530, 1731, 1896, 1920, 1965, 2007, 2025, 2058, 2133, 2160, 2376, 2379, 2382, 2406, 2553, 2577, 2673, 2703, 2727
Offset: 1
Keywords
Examples
381^3 + 381 +- 1 (55305961 and 55305959, respectively) are both prime. Thus, 381 is a member of this sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..5*10^3] |IsPrime(n^3+n-1) and IsPrime(n^3 +n+1)]; // Vincenzo Librandi, Dec 26 2015
-
Mathematica
Select[Range[3000], PrimeQ[#^3 + # - 1] && PrimeQ[#^3 + # + 1] &] (* Vincenzo Librandi, Dec 26 2015 *) Select[Range[3000],AllTrue[#^3+#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 23 2020 *)
-
PARI
isok(n) = isprime(n^3+n+1) && isprime(n^3+n-1); \\ Michel Marcus, Dec 27 2015
-
Python
import sympy from sympy import isprime {print(n) for n in range(10**4) if isprime(n**3+n-1) and isprime(n**3+n+1)}
Comments