cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236526 Numbers k such that k^3 + k +- 1 are twin primes.

Original entry on oeis.org

3, 15, 18, 21, 39, 87, 117, 120, 135, 243, 360, 366, 381, 426, 429, 615, 642, 723, 879, 1002, 1023, 1170, 1173, 1224, 1458, 1506, 1518, 1530, 1731, 1896, 1920, 1965, 2007, 2025, 2058, 2133, 2160, 2376, 2379, 2382, 2406, 2553, 2577, 2673, 2703, 2727
Offset: 1

Views

Author

Derek Orr, Jan 27 2014

Keywords

Comments

The only prime in this sequence is a(1) = 3.

Examples

			381^3 + 381 +- 1 (55305961 and 55305959, respectively) are both prime. Thus, 381 is a member of this sequence.
		

Crossrefs

Intersection of A049407 and A236475.

Programs

  • Magma
    [n: n in [1..5*10^3] |IsPrime(n^3+n-1) and IsPrime(n^3 +n+1)]; // Vincenzo Librandi, Dec 26 2015
    
  • Mathematica
    Select[Range[3000], PrimeQ[#^3 + # - 1] && PrimeQ[#^3 + # + 1] &] (* Vincenzo Librandi, Dec 26 2015 *)
    Select[Range[3000],AllTrue[#^3+#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 23 2020 *)
  • PARI
    isok(n) = isprime(n^3+n+1) && isprime(n^3+n-1); \\ Michel Marcus, Dec 27 2015
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**3+n-1) and isprime(n**3+n+1)}