A236538 Triangle read by rows: T(n,k) = (n+1)*2^(n-2)+(k-1)*2^(n-1) for 1 <= k <= n.
1, 3, 5, 8, 12, 16, 20, 28, 36, 44, 48, 64, 80, 96, 112, 112, 144, 176, 208, 240, 272, 256, 320, 384, 448, 512, 576, 640, 576, 704, 832, 960, 1088, 1216, 1344, 1472, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 2816, 3328, 3840, 4352, 4864, 5376
Offset: 1
Examples
Triangle begins: ================================================ \k | 1 2 3 4 5 6 7 n\ | ================================================ 1 | 1; 2 | 3, 5; 3 | 8, 12, 16; 4 | 20, 28, 36, 44; 5 | 48, 64, 80, 96, 112; 6 | 112, 144, 176, 208, 240, 272; 7 | 256, 320, 384, 448, 512, 576, 640; ...
Links
- Fedor Igumnov, T(n,k) for n = 1..26
Crossrefs
Programs
-
C
int a(int n, int k) {return (n+1)*pow(2,n-2)+(k-1)*pow(2,n-1);}
-
Magma
/* As triangle: */ [[(n+1)*2^(n-2)+(k-1)*2^(n-1): k in [1..n]]: n in [1..10]]; // Bruno Berselli, Jan 28 2014
-
Mathematica
t[n_, k_] := (n + 1)*2^(n - 2) + (k - 1)*2^(n - 1); Table[t[n, k], {n, 10}, {k, n}] // Flatten (* Bruno Berselli, Jan 28 2014 *)
Formula
T(n,k) = T(n-1,k) + T(n-1,k+1).
Sum_{k=1..n} T(n,k) = n^2*2^(n-1) = A014477(n-1).
Extensions
More terms from Bruno Berselli, Jan 28 2014
Comments