cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236632 Sum of all divisors of all positive integers <= n minus the total number of divisors of all positive integers <= n.

Original entry on oeis.org

0, 1, 3, 7, 11, 19, 25, 36, 46, 60, 70, 92, 104, 124, 144, 170, 186, 219, 237, 273, 301, 333, 355, 407, 435, 473, 509, 559, 587, 651, 681, 738, 782, 832, 876, 958, 994, 1050, 1102, 1184, 1224, 1312, 1354, 1432, 1504, 1572, 1618, 1732, 1786, 1873, 1941
Offset: 1

Views

Author

Omar E. Pol, Jan 31 2014

Keywords

Examples

			For n = 6 the sets of divisors of the positive integers <= 6 are {1}, {1, 2}, {1, 3}, {1, 2, 4}, {1, 5}, {1, 2, 3, 6}. There are 14 total divisors and their sum is 1 + 3 + 4 + 7 + 6 + 12 = 33, so a(6) = 33 - 14 = 19.
		

Crossrefs

Partial sums of A065608.

Programs

  • Magma
    [(&+[DivisorSigma(1, k) - DivisorSigma(0, k) : k in [1..n]]): n in [1..60]]; // Vincenzo Librandi, Aug 02 2019
    
  • Maple
    A236632:=n->(1/2)*add(floor(n/i)*floor((n-i)/i), i=1..n): seq(A236632(n), n=1..100); # Wesley Ivan Hurt, Jan 30 2016
    N:= 1000: # to get a(1) to a(N)
    A065608:= Vector(N):
    for a from 1 to floor(sqrt(N)) do for b from a to N/a do
       if b = a then
         A065608[a*b] := A065608[a*b] + a - 1
       else
         A065608[a*b] := A065608[a*b] + a + b - 2;
       fi
    od od:
    ListTools:-PartialSums(convert(A065608,list)); # Robert Israel, May 16 2016
  • Mathematica
    Table[Sum[Floor[n/i]*Floor[(n - i)/i], {i, n}]/2, {n, 50}] (* Wesley Ivan Hurt, Jan 30 2016 *)
    Table[Sum[Binomial[Floor[n/i], 2], {i, n}], {n, 51}] (* Michael De Vlieger, May 15 2016 *)
    Accumulate@ Table[DivisorSum[n, # - 1 &], {n, 51}] (* or *)
    Table[Sum [(k - 1) Floor[n/k], {k, n}], {n, 51}] (* Michael De Vlieger, Apr 03 2017 *)
  • PARI
    a(n) = sum(i=1, n, sigma(i)) - sum(i=1, n, numdiv(i)); \\ Michel Marcus, Feb 01 2014
    
  • Python
    from math import isqrt
    def A236632(n): return (s:=isqrt(n))**2*(1-s)+sum((q:=n//k)*((k<<1)+q-3) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 23 2023

Formula

a(n) = A024916(n) - A006218(n).
a(n) = (1/2) * Sum_{i=1..n} floor(n/i) * floor((n-i)/i). - Wesley Ivan Hurt, Jan 30 2016
a(n) = Sum_{i=1..n} binomial(floor(n/i),2). - Wesley Ivan Hurt, May 08 2016
a(n) = Sum_{k=1..n} (k-1) * floor(n/k). - Wesley Ivan Hurt, Apr 02 2017
a(n) = (1/2)*(A222548(n) - A006218(n)). - Ridouane Oudra, Aug 01 2019