cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236758 Number of partitions of 3*n into 3 parts with smallest part prime.

Original entry on oeis.org

0, 1, 3, 6, 10, 14, 20, 25, 32, 37, 45, 51, 61, 68, 79, 86, 98, 106, 120, 129, 144, 153, 169, 179, 196, 206, 223, 233, 251, 262, 282, 294, 315, 327, 348, 360, 382, 395, 418, 431, 455, 469, 495, 510, 537, 552, 580, 596, 625, 641, 670, 686, 716, 733, 764, 781
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 30 2014

Keywords

Examples

			Count the primes in last column for a(n):
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
---------------------------------------------------------------------
    0           1           3           6           10      ..   a(n)
		

Crossrefs

Cf. A019298, A235988, A236364, A236762, A010051 (for function isprime).

Programs

  • Maple
    with(numtheory); A236758:=n->sum((pi(n) - pi(n-1)) * (2*n - 2*i + 1 - floor((n - i + 1)/2)), i=1..n); seq(A236758(n), n=1..100);
  • Mathematica
    Table[Sum[(PrimePi[i] - PrimePi[i - 1]) (2 n - 2 i + 1 - Floor[(n - i + 1)/2]), {i, n}], {n, 100}]
  • Sage
    def a(n): return sum(1 for L in Partitions(3*n,length=3).list() if is_prime(L[2]))

Formula

a(n) = Sum_{i=1..n} A010051(i) * (2*n - 2*i + 1 - floor((n - i + 1)/2)).