cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A236762 Number of partitions of 3n into 3 parts with the middle part prime.

Original entry on oeis.org

0, 2, 5, 7, 11, 14, 17, 19, 23, 29, 35, 40, 47, 53, 59, 67, 76, 82, 88, 93, 100, 109, 118, 124, 131, 140, 149, 160, 173, 185, 197, 208, 220, 232, 244, 258, 273, 285, 297, 311, 327, 342, 357, 369, 382, 397, 412, 426, 442, 460, 478, 496, 515, 533, 551, 571
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 30 2014

Keywords

Examples

			Count the primes in the second columns for a(n):
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
--------------------------------------------------------------------
    0           2           5           7          11      ..   a(n)
		

Crossrefs

Programs

  • Maple
    with(numtheory); A236762:=n->sum( i * (pi(i) - pi(i - 1)), i = 1..n) +
    sum( (pi(n + i) - pi(n + i - 1)) * (n - 2*i), i = 1..floor((n - 1)/2) ); seq(A236762(n), n=1..100);
  • Mathematica
    Table[Sum[i (PrimePi[i] - PrimePi[i - 1]), {i, n}] + Sum[(PrimePi[n + i] - PrimePi[n + i - 1]) (n - 2 i), {i, Floor[(n - 1)/2]}], {n, 100}]
  • Sage
    def a(n): return sum(1 for L in Partitions(3*n,length=3).list() if is_prime(L[1])) # Ralf Stephan, Feb 03 2014

Formula

a(n) = Sum_{i=1..n} i * A010051(i) + Sum_{i=1..floor((n - 1)/2)} A010051(n + i) * (n - 2i).

A236370 Sum of the largest parts in the partitions of 3n into 3 parts.

Original entry on oeis.org

1, 9, 34, 81, 163, 282, 454, 678, 973, 1335, 1786, 2319, 2959, 3696, 4558, 5532, 6649, 7893, 9298, 10845, 12571, 14454, 16534, 18786, 21253, 23907, 26794, 29883, 33223, 36780, 40606, 44664, 49009, 53601, 58498, 63657, 69139, 74898, 80998, 87390, 94141
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 23 2014

Keywords

Examples

			Add first columns for a(n)..
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
---------------------------------------------------------------------
    1           9          34           81          163      ..  a(n)
		

Crossrefs

Programs

  • Mathematica
    Table[3 n (n^2 - Floor[n^2/4]) - Sum[2 i^2 - Floor[i^2/4], {i, n}] -
      Sum[(n + i) (n - 2 i), {i, Floor[(n - 1)/2]}], {n, 100}]
    LinearRecurrence[{2,1,-4,1,2,-1},{1,9,34,81,163,282},50] (* Harvey P. Dale, Nov 11 2017 *)
  • PARI
    Vec(x*(2*x^4+8*x^3+15*x^2+7*x+1)/((x-1)^4*(x+1)^2) + O(x^100)) \\ Colin Barker, Jan 24 2014

Formula

a(n) = 3n * (n^2 - floor(n^2/4)) - Sum_{i=1..n} (2*i^2 - floor(i^2/4)) - Sum_{i=1..floor((n-1)/2)} (n + i) * (n - 2i).
From Colin Barker, Jan 24 2014: (Start)
a(n) = (-1+(-1)^n-(1+3*(-1)^n)*n-6*n^2+22*n^3)/16.
G.f.: x*(2*x^4+8*x^3+15*x^2+7*x+1) / ((x-1)^4*(x+1)^2). (End)
a(n) = Sum_{j=0..n-2} (Sum_{i=n+1+floor(j/2)-floor(1/j+1)..n+2*(j+1)} i), n > 1. - Wesley Ivan Hurt, Feb 10 2014
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6). - Wesley Ivan Hurt, Nov 19 2021

A237264 Number of partitions of 3n into 3 parts with largest part prime.

Original entry on oeis.org

0, 2, 4, 4, 8, 7, 13, 15, 22, 21, 28, 29, 36, 35, 44, 45, 54, 55, 67, 70, 83, 84, 96, 99, 116, 119, 135, 138, 154, 154, 170, 172, 187, 189, 208, 211, 231, 235, 259, 264, 285, 286, 306, 310, 334, 337, 361, 366, 389, 390, 413, 416, 441, 443, 468, 471, 496, 498
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 10 2014

Keywords

Examples

			Count the primes in the first column for a(n).
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
---------------------------------------------------------------------
    0           2           4           4           8       ..  a(n)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[PrimePi[i] - PrimePi[i - 1], {i, n + Floor[j/2] + 1 - Floor[1/(j + 1)], n + 2 (j + 1)}], {j, 0, n - 2}], {n, 50}]
    Table[Count[IntegerPartitions[3 n,{3}],?(PrimeQ[#[[1]]]&)],{n,60}] (* _Harvey P. Dale, Mar 06 2022 *)

Formula

a(n) = Sum_{j=0..n-2} ( Sum_{i=n + 1 + floor(j/2) - floor(1/(j + 1))..n + 2(j + 1)} A010051(i) ).

A237669 Number of prime parts in the partitions of 3n into 3 parts.

Original entry on oeis.org

0, 5, 12, 17, 29, 35, 50, 59, 77, 87, 108, 120, 144, 156, 182, 198, 228, 243, 275, 292, 327, 346, 383, 402, 443, 465, 507, 531, 578, 601, 649, 674, 722, 748, 800, 829, 886, 915, 974, 1006, 1067, 1097, 1158, 1189, 1253, 1286, 1353, 1388, 1456, 1491, 1561
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 11 2014

Keywords

Examples

			Count the primes in the partitions of 3n into 3 parts for a(n).
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
---------------------------------------------------------------------
    0           5           12          17          29      ..  a(n)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[PrimePi[i] - PrimePi[i - 1], {i, n + Floor[j/2] + 1 - Floor[1/(j + 1)], n + 2 (j + 1)}], {j, 0, n - 2}] + Sum[i (PrimePi[i] - PrimePi[i - 1]), {i, n}] + Sum[(PrimePi[n + i] - PrimePi[n + i - 1]) (n - 2 i), {i, Floor[(n - 1)/2]}] + Sum[(PrimePi[i] - PrimePi[i - 1]) (2 n - 2 i + 1 - Floor[(n - i + 1)/2]), {i, n}], {n, 70}]
    Table[Count[Flatten[IntegerPartitions[3 n,{3}]],?PrimeQ],{n,60}] (* _Harvey P. Dale, Oct 16 2016 *)

Formula

a(n) = A237264(n) + A236762(n) + A236758(n).
Showing 1-4 of 4 results.