A236762 Number of partitions of 3n into 3 parts with the middle part prime.
0, 2, 5, 7, 11, 14, 17, 19, 23, 29, 35, 40, 47, 53, 59, 67, 76, 82, 88, 93, 100, 109, 118, 124, 131, 140, 149, 160, 173, 185, 197, 208, 220, 232, 244, 258, 273, 285, 297, 311, 327, 342, 357, 369, 382, 397, 412, 426, 442, 460, 478, 496, 515, 533, 551, 571
Offset: 1
Examples
Count the primes in the second columns for a(n): 13 + 1 + 1 12 + 2 + 1 11 + 3 + 1 10 + 4 + 1 9 + 5 + 1 8 + 6 + 1 7 + 7 + 1 10 + 1 + 1 11 + 2 + 2 9 + 2 + 1 10 + 3 + 2 8 + 3 + 1 9 + 4 + 2 7 + 4 + 1 8 + 5 + 2 6 + 5 + 1 7 + 6 + 2 7 + 1 + 1 8 + 2 + 2 9 + 3 + 3 6 + 2 + 1 7 + 3 + 2 8 + 4 + 3 5 + 3 + 1 6 + 4 + 2 7 + 5 + 3 4 + 4 + 1 5 + 5 + 2 6 + 6 + 3 4 + 1 + 1 5 + 2 + 2 6 + 3 + 3 7 + 4 + 4 3 + 2 + 1 4 + 3 + 2 5 + 4 + 3 6 + 5 + 4 1 + 1 + 1 2 + 2 + 2 3 + 3 + 3 4 + 4 + 4 5 + 5 + 5 3(1) 3(2) 3(3) 3(4) 3(5) .. 3n -------------------------------------------------------------------- 0 2 5 7 11 .. a(n)
Programs
-
Maple
with(numtheory); A236762:=n->sum( i * (pi(i) - pi(i - 1)), i = 1..n) + sum( (pi(n + i) - pi(n + i - 1)) * (n - 2*i), i = 1..floor((n - 1)/2) ); seq(A236762(n), n=1..100);
-
Mathematica
Table[Sum[i (PrimePi[i] - PrimePi[i - 1]), {i, n}] + Sum[(PrimePi[n + i] - PrimePi[n + i - 1]) (n - 2 i), {i, Floor[(n - 1)/2]}], {n, 100}]
-
Sage
def a(n): return sum(1 for L in Partitions(3*n,length=3).list() if is_prime(L[1])) # Ralf Stephan, Feb 03 2014