A236770 a(n) = n*(n + 1)*(3*n^2 + 3*n - 2)/8.
0, 1, 12, 51, 145, 330, 651, 1162, 1926, 3015, 4510, 6501, 9087, 12376, 16485, 21540, 27676, 35037, 43776, 54055, 66045, 79926, 95887, 114126, 134850, 158275, 184626, 214137, 247051, 283620, 324105, 368776, 417912, 471801, 530740, 595035, 665001, 740962
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Partial sums of A004188.
Cf. similar sequences on the polygonal numbers: A002817(n) = A000217(A000217(n)); A000537(n) = A000290(A000217(n)); A037270(n) = A000217(A000290(n)); A062392(n) = A000384(A000217(n)).
Programs
-
Magma
[n*(n+1)*(3*n^2+3*n-2)/8: n in [0..40]];
-
Mathematica
Table[n (n + 1) (3 n^2 + 3 n - 2)/8, {n, 0, 40}] LinearRecurrence[{5,-10,10,-5,1},{0,1,12,51,145},40] (* Harvey P. Dale, Aug 22 2016 *)
-
PARI
for(n=0, 40, print1(n*(n+1)*(3*n^2+3*n-2)/8", "));
Formula
G.f.: x*(1 + 7*x + x^2)/(1 - x)^5.
a(n) = a(-n-1) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Sum_{n>=1} 1/a(n) = 2 + 4*sqrt(3/11)*Pi*tan(sqrt(11/3)*Pi/2) = 1.11700627139319... . - Vaclav Kotesovec, Apr 27 2016
Comments