A237043 Numbers n such that 2^n - 1 is not squarefree, but 2^d - 1 is squarefree for every proper divisor d of n.
6, 20, 21, 110, 136, 155, 253, 364, 602, 657, 812, 889, 979, 1081
Offset: 1
Links
- Peice Hua, Finite 2-groups having a cyclic or dihedral maximal subgroup and arc-transitive maps, arXiv:2508.05981 [math.GR], 2025. See p. 3.
Programs
-
Mathematica
Select[Range@ 160, And[AllTrue[2^#2 - 1, SquareFreeQ], ! SquareFreeQ[2^First@ #1 - 1]] & @@ TakeDrop[Divisors@ #, -1] &] (* Michael De Vlieger, Jul 07 2019 *)
-
PARI
default(factor_add_primes, 1); isA049094(n)=my(f=factor(n>>valuation(n, 2))[, 1], N, o); for(i=1, #f, if(n%(f[i]-1) == 0, return(1))); N=2^n-1; fordiv(n, d, f=factor(2^d-1)[, 1]; for(i=1, #f, if(d==n, return(!issquarefree(N))); o=valuation(N, f[i]); if(o>1, return(1)); N/=f[i]^o)) is(n)=fordiv(n,d,if(isA049094(d),return(d==n))); 0
-
PARI
\\ Simpler but slow is(n)=fordiv(n,d,if(!issquarefree(2^d-1),return(d==n))); 0
Extensions
a(14) from Charles R Greathouse IV, Sep 21 2015, following Womack's factorization of 2^991-1.
Comments