A237128 Angles n expressed in degrees such that 2*cos(n) = phi where phi is the golden ratio (A001622).
36, 324, 396, 684, 756, 1044, 1116, 1404, 1476, 1764, 1836, 2124, 2196, 2484, 2556, 2844, 2916, 3204, 3276, 3564, 3636, 3924, 3996, 4284, 4356, 4644, 4716, 5004, 5076, 5364, 5436, 5724, 5796, 6084, 6156, 6444, 6516, 6804, 6876, 7164, 7236, 7524, 7596, 7884
Offset: 1
Examples
1476 is in the sequence because 2*cos(1476°) = 2*cos(1476*Pi/180) = 1.61803398... = phi.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
***first program*** with(numtheory):err:=1/10^10:Digits:=20:for n from 1 to 20000 do:x:=evalf(2*cos(n*Pi/180)):ph:=evalf((1+sqrt(5)))/2:if abs(ph-x)
-
Mathematica
Select[Range[8000],2*Cos[# Degree]==GoldenRatio&] (* or *) LinearRecurrence[ {1,1,-1},{36,324,396},50] (* Harvey P. Dale, Aug 14 2015 *)
-
PARI
Vec(36*x*(x^2+8*x+1)/((x-1)^2*(x+1)) + O(x^100)) \\ Colin Barker, Feb 04 2014
Formula
a(n) = 18*(-5+3*(-1)^n+10*n). a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: 36*x*(x^2+8*x+1) / ((x-1)^2*(x+1)). - Colin Barker, Feb 04 2014
Comments