A237201 Smallest integer m such that the n consecutive numbers m, m+1, ..., m+n-1 have n prime factors each, counted with multiplicity; a(n) = 0 if no such number exists.
2, 9, 170, 4023, 632148, 4843161124, 1981162639374
Offset: 1
Crossrefs
Cf. A001222.
Programs
-
Mathematica
Table[First@Select[Range[10^6],Union[PrimeOmega[(#+Range[n]-1)]]==={n}&,1],{n,5}] (* Wouter Meeussen, Feb 09 2014 *) With[{po=PrimeOmega[Range[633000]]},Table[SequencePosition[po,PadRight[{},n,n],1][[1,1]],{n,5}]] (* Requires Mathematica version 10 or later *) (* The program generates the first 5 terms of the sequence. *) (* Harvey P. Dale, Jun 15 2021 *)
-
PARI
for(n=1, 5, for(k=2^n-1, oo, my(found=1); for(j=1, n, if(bigomega(k+j)!=n, found=0; break)); if(found, print1(k+1,", "); break))) \\ Hugo Pfoertner, Oct 21 2020
-
Python
import sympy from sympy import isprime from sympy import factorint def PrimeFact(x): n = 9930000 lst = [] while n < 10**10: if not isprime(n): count = 0 for i in range(n, n+x): if sum(factorint(i).values()) == x: count += 1 else: n += 1 break if count == x: return n else: n += 1
Extensions
a(6) from Giovanni Resta, Feb 09 2014
a(7) from Giovanni Resta, Feb 10 2014