A237290 Sum of positive numbers k <= sigma(n) that are a sum of any subset of distinct divisors of n.
1, 6, 8, 28, 12, 78, 16, 120, 52, 144, 24, 406, 28, 192, 192, 496, 36, 780, 40, 903, 256, 288, 48, 1830, 124, 336, 320, 1596, 60, 2628, 64, 2016, 384, 432, 384, 4186, 76, 480, 448, 4095, 84, 4656, 88, 2688, 2184, 576, 96, 7750, 228, 2976, 576, 3136, 108, 7260
Offset: 1
Keywords
Examples
For n = 5, a(5) = 1 + 5 + 6 = 12 (each of the numbers 1, 5 and 6 is the sum of a subset of distinct divisors of 5). The numbers n = 14 and 15 is an interesting pair of consecutive numbers with identical value of sigma(n) such that simultaneously a(14) = a(15) and A237289(14) = A237289(15). a(14) = 1+2+3+7+8+9+10+14+15+16+17+21+22+23+24 = a(15) = 1+3+4+5+6+8+9+15+16+18+19+20+21+23+24 = 192.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 200 terms from Vincenzo Librandi)
- Jon Maiga, Computer-generated formulas for A237290, Sequence Machine.
Crossrefs
Programs
-
Maple
isSumDist := proc(n,k) local dvs,s ; dvs := numtheory[divisors](n) ; for s in combinat[powerset](dvs) do add(m,m=op(s)) ; if % = k then return true; end if; end do: false ; end proc: A237290 := proc(n) local a; a := 0 ; for k from 1 to numtheory[sigma](n) do if isSumDist(n,k) then a := a+k; end if; end do: end proc: seq(A237290(n),n=1..20) ; # R. J. Mathar, Mar 13 2014
-
Mathematica
a[n_] := Plus @@ Union[Plus @@@ Subsets@ Divisors@ n]; Array[a, 54] (* Giovanni Resta, Mar 13 2014 *)
-
PARI
padbin(n, len) = {b = binary(n); while(length(b) < len, b = concat(0, b);); b;} a(n) = {vks = []; d = divisors(n); nbd = #d; for (i=1, 2^nbd-1, b = padbin(i, nbd); onek = sum(j=1, nbd, d[j]*b[j]); vks = Set(concat(vks, onek));); sum(i=1, #vks, vks[i]);} \\ Michel Marcus, Mar 09 2014
-
PARI
A237290(n) = { my(c=[0]); fordiv(n,d, c = Set(concat(c,vector(#c,i,c[i]+d)))); vecsum(c); }; \\ after Chai Wah Wu's Python-code, Antti Karttunen, Nov 29 2024
-
Python
from sympy import divisors def A237290(n): ds = divisors(n) c, s = {0}, sum(ds) for d in ds: c |= {a+d for a in c} return sum(a for a in c if 1<=a<=s) # Chai Wah Wu, Jul 05 2023
Formula
a(p) = 2(p+2) for odd primes p.
a(n) = A184387(n) for practical numbers n (A005153), a(n) < A184387(n) for numbers n that are not practical (A237287).
a(n) = A000203(n) * (A119347(n)+1) / 2. [Found by Sequence Machine and easily seen to be true. Compare for example to the formulas of A229335.] - Antti Karttunen, Nov 29 2024