cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237290 Sum of positive numbers k <= sigma(n) that are a sum of any subset of distinct divisors of n.

Original entry on oeis.org

1, 6, 8, 28, 12, 78, 16, 120, 52, 144, 24, 406, 28, 192, 192, 496, 36, 780, 40, 903, 256, 288, 48, 1830, 124, 336, 320, 1596, 60, 2628, 64, 2016, 384, 432, 384, 4186, 76, 480, 448, 4095, 84, 4656, 88, 2688, 2184, 576, 96, 7750, 228, 2976, 576, 3136, 108, 7260
Offset: 1

Views

Author

Jaroslav Krizek, Mar 02 2014

Keywords

Examples

			For n = 5, a(5) = 1 + 5 + 6 = 12 (each of the numbers 1, 5 and 6 is the sum of a subset of distinct divisors of 5).
The numbers n = 14 and 15 is an interesting pair of consecutive numbers with identical value of sigma(n) such that simultaneously a(14) = a(15) and A237289(14) = A237289(15).
a(14) = 1+2+3+7+8+9+10+14+15+16+17+21+22+23+24 = a(15) = 1+3+4+5+6+8+9+15+16+18+19+20+21+23+24 = 192.
		

Crossrefs

Cf. A000203, A119348, A005153, A119347 (count of the same numbers), A184387, A229335, A237287, A237289.

Programs

  • Maple
    isSumDist := proc(n,k)
        local dvs,s ;
        dvs := numtheory[divisors](n) ;
        for s in combinat[powerset](dvs) do
            add(m,m=op(s)) ;
            if % = k then
                return true;
            end if;
        end do:
        false ;
    end proc:
    A237290 := proc(n)
        local a;
        a := 0 ;
        for k from 1 to numtheory[sigma](n) do
            if isSumDist(n,k) then
                a := a+k;
            end if;
        end do:
    end proc:
    seq(A237290(n),n=1..20) ; # R. J. Mathar, Mar 13 2014
  • Mathematica
    a[n_] := Plus @@ Union[Plus @@@ Subsets@ Divisors@ n]; Array[a, 54] (* Giovanni Resta, Mar 13 2014 *)
  • PARI
    padbin(n, len) = {b = binary(n); while(length(b) < len, b = concat(0, b);); b;}
    a(n) = {vks = []; d = divisors(n); nbd = #d; for (i=1, 2^nbd-1, b = padbin(i, nbd); onek = sum(j=1, nbd, d[j]*b[j]); vks = Set(concat(vks, onek));); sum(i=1, #vks, vks[i]);} \\ Michel Marcus, Mar 09 2014
    
  • PARI
    A237290(n) = { my(c=[0]); fordiv(n,d, c = Set(concat(c,vector(#c,i,c[i]+d)))); vecsum(c); }; \\ after Chai Wah Wu's Python-code, Antti Karttunen, Nov 29 2024
    
  • Python
    from sympy import divisors
    def A237290(n):
        ds = divisors(n)
        c, s = {0}, sum(ds)
        for d in ds:
            c |=  {a+d for a in c}
        return sum(a for a in c if 1<=a<=s) # Chai Wah Wu, Jul 05 2023

Formula

a(n) = A184387(n) - A237289(n).
a(p) = 2(p+2) for odd primes p.
a(n) = A184387(n) for practical numbers n (A005153), a(n) < A184387(n) for numbers n that are not practical (A237287).
a(n) = A000203(n) * (A119347(n)+1) / 2. [Found by Sequence Machine and easily seen to be true. Compare for example to the formulas of A229335.] - Antti Karttunen, Nov 29 2024