A237342 For k in {2,3,...,9} define a sequence as follows: a(0)=0; for n>=0, a(n+1)=a(n)+1, unless a(n) ends in k, in which case a(n+1) is obtained by replacing the last digit of a(n) with the digit(s) of k^2. This is k(5).
0, 1, 2, 3, 4, 5, 25, 225, 2225, 22225, 222225, 2222225, 22222225, 222222225, 2222222225, 22222222225, 222222222225, 2222222222225, 22222222222225, 222222222222225, 2222222222222225, 22222222222222225, 222222222222222225, 2222222222222222225
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (11, -10).
Programs
-
Mathematica
Join[Range[0, 4], Table[(25 + 2 10^(n - 4))/9, {n, 5, 30}]] (* Bruno Berselli, Feb 08 2014 *)
Formula
G.f.: (10*x^6-9*x^5-9*x^4-9*x^3-9*x^2+x)/(10*x^2-11*x+1). - Alois P. Heinz, Feb 07 2014
a(n) = ( 25 + 2*10^(n-4) )/9 for n>4. [Bruno Berselli, Feb 08 2014]
Extensions
Definition by N. J. A. Sloane, Feb 07 2014