A237350 a(n) = the smallest number k such that Sum_{d|k} 1/tau(d) >= n.
1, 6, 24, 60, 180, 420, 840, 2520, 4620, 9240, 13860, 27720, 55440, 55440, 110880, 166320, 180180, 360360, 360360, 720720, 720720, 1441440, 1801800, 2162160, 3063060, 4084080, 6126120, 6126120, 6126120, 12252240, 12252240, 18378360, 24504480, 24504480, 30630600, 36756720
Offset: 1
Keywords
Examples
For n = 2; a(2) = 6 because 6 is the smallest number with Sum_{d|6} 1/tau(d) = 1/1 + 1/2 + 1/2 + 1/4 = 9/4 >= 2.
Links
- David A. Corneth, Table of n, a(n) for n = 1..3338 (first 131 terms from Robert Israel, terms <= 10^25)
- David A. Corneth, m, Sum_{d|a(m)} 1/tau(d) and the prime signature of a(m)
Crossrefs
Programs
-
Magma
a:=1; S:=[a]; for n in [2..14] do k:=0; flag:= true; while flag do k+:=1; if &+[1/NumberOfDivisors(d): d in Divisors(k)] gt n then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
-
Maple
N:= 10^9: # to get all entries <= N Primorials:= NULL: p:= 2: P:= p: while P <= N do Primorials:= Primorials, P; p:= nextprime(p); P:= P*p; od: Primorials:= [Primorials]: S:= {1}: for i from 1 to nops(Primorials) do S:= {seq(seq(s*Primorials[i]^j, j = 0 .. floor(log[Primorials[i]](N/s))),s=S)} od: A:= NULL: S:= sort(convert(S,list)): xmax:= 0: for s in S do x:= floor(add(1/numtheory:-tau(d),d=numtheory:-divisors(s))); if x > xmax then A:= A, s$(x-xmax); xmax:= x fi od: A; # Robert Israel, Dec 21 2015
-
Mathematica
s[1] = 1; s[n_] := DivisorSum[n, 1/DivisorSigma[0, #] &]; n = 1; k = 1; seq = {}; Do[While[s[k] < n, k++]; AppendTo[seq, k]; n++, {j, 1, 20}]; seq (* Amiram Eldar, Jan 30 2019 *)
-
PARI
a(n) = {my(k=1); while(sumdiv(k, d, 1/numdiv(d)) < n, k++); k;} \\ Michel Marcus, Dec 20 2015
Extensions
a(24)-a(30) from Michel Marcus, Dec 20 2015
a(31)-a(35) from Robert Israel, Dec 21 2015
Missing a(31) = 12252240 inserted in data section by Georg Fischer, Nov 05 2019
Comments