A237415 For k in {2,3,...,9} define a sequence as follows: a(0)=0; for n>=0, a(n+1)=a(n)+1, unless a(n) ends in k, in which case a(n+1) is obtained by replacing the last digit of a(n) with the digit(s) of k^3. This is k(2).
0, 1, 2, 8, 9, 10, 11, 12, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 38, 39, 40, 41, 42, 48, 49, 50, 51, 52, 58, 59, 60, 61, 62, 68, 69, 70, 71, 72, 78, 79, 80, 81, 82, 88, 89, 90, 91, 92, 98, 99, 100, 101, 102, 108, 109, 110, 111, 112, 118, 119, 120, 121, 122, 128
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Programs
-
Magma
I:=[0,1,2,8,9,10]; [n le 6 select I[n] else Self(n-1)+Self(n-5)-Self(n-6): n in [1..80]]; // Vincenzo Librandi, Feb 12 2014
-
Mathematica
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 2, 8, 9, 10}, 70] (* Bruno Berselli, Feb 08 2014 *) CoefficientList[Series[x (1 + x + 6 x^2 + x^3 + x^4)/((1 - x)^2 (1 + x + x^2 + x^3 + x^4)), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 12 2014 *) NestList[If[Mod[#,10]==2,FromDigits[Join[Most[IntegerDigits[#]],{8}]], #+ 1]&,0,100] (* Harvey P. Dale, Feb 21 2016 *)
Formula
G.f.: x*(1 + x + 6*x^2 + x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)). [Bruno Berselli, Feb 08 2014]
a(n) = a(n-1)+a(n-5)-a(n-6). - Vincenzo Librandi, Feb 12 2014
Extensions
Definition by N. J. A. Sloane, Feb 07 2014
Comments