A237590 a(n) is the total number of regions (or parts) after n-th stage in the diagram of the symmetries of sigma described in A236104.
1, 2, 4, 5, 7, 8, 10, 11, 14, 16, 18, 19, 21, 23, 26, 27, 29, 30, 32, 33, 37, 39, 41, 42, 45, 47, 51, 52, 54, 55, 57, 58, 62, 64, 67, 68, 70, 72, 76, 77, 79, 80, 82, 84, 87, 89, 91, 92, 95, 98, 102, 104, 106, 107, 111, 112, 116, 118, 120, 121, 123, 125, 130, 131, 135, 136, 138, 140, 144, 147, 149, 150, 152, 154
Offset: 1
Keywords
Examples
Illustration of initial terms: . _ _ _ _ . _ _ _ |_ _ _ |_ . _ _ _ |_ _ _| |_ _ _| |_ . _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ | . _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | | . _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | | . |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_| . . . 1 2 4 5 7 8 . For n = 6 the diagram contains 8 regions (or parts), so a(6) = 8. The sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 33. On the other hand after 6 stages the sum of all parts of the diagram is [1] + [3] + [2+2] + [7] + [3+3] + [12] = 33, equaling the sum of all divisors of all positive integers <= 6. Note that the region between the virtual circumscribed square and the diagram is a symmetric polygon whose area is equal to A004125(6) = 3. From _Omar E. Pol_, Dec 25 2020: (Start) Illustration of the diagram after 29 stages (contain 215 vertices, 268 edges and 54 regions or parts): ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _ | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _ _ _ _ _ _ _ _ _ _ _ | | |_ _ _ _ _ _ _ _ _ _ _ _ _| | | |_ _ _ _ _ _ _ _ _ _ _ _ | | |_ _ _ |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _ | |_ _ _ _ _ _ _ _ _ _ _ | | |_ _ | |_ |_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_ |_ |_ _ _ _ _ _ _ _ _ _ | | |_ _| |_ |_ _ _ _ _ _ _ _ _ _| | |_ _ |_ |_ _ |_ _ |_ _ _ _ _ _ _ _ _ | |_ _ _| |_ | |_ _ | |_ _ _ _ _ _ _ _ _| | |_ _ |_ |_|_ _ | | |_ _ _ _ _ _ _ _ | |_ _ |_ _|_ | | | |_ _ _ _ _ _ |_ _ _ _ _ _ _ _| | | | |_ _ | |_|_ _ _ _ _ | | |_ _ _ _ _ _ _ | |_ _ |_ |_ | | |_ _ _ _ _ | | | | |_ _ _ _ _ _ _| |_ _ |_ |_ _ | | |_ _ _ _ _ | | | | | | |_ _ _ _ _ _ | |_ |_ |_ | |_|_ _ _ _ | | | | | | | | |_ _ _ _ _ _| |_ _| |_ | |_ _ _ _ | | | | | | | | | | |_ _ _ _ _ | |_ _ | |_ _ _ _ | | | | | | | | | | | | |_ _ _ _ _| |_ | |_|_ _ _ | | | | | | | | | | | | | | |_ _ _ _ |_ _|_ |_ _ _ | | | | | | | | | | | | | | | | |_ _ _ _| |_ | |_ _ _ | | | | | | | | | | | | | | | | | | |_ _ _ |_ |_|_ _ | | | | | | | | | | | | | | | | | | | | |_ _ _| |_ _ | | | | | | | | | | | | | | | | | | | | | | |_ _ |_ _ | | | | | | | | | | | | | | | | | | | | | | | | |_ _|_ | | | | | | | | | | | | | | | | | | | | | | | | | | |_ | | | | | | | | | | | | | | | | | | | | | | | | | | | | |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| . (End)
Links
- Robert Price, Table of n, a(n) for n = 1..5000
- Omar E. Pol, An infinite stepped pyramid
- Omar E. Pol, Diagram of the isosceles triangle A237593 before the 90-degree-zig-zag folding (rows: 1..28)
- Omar E. Pol, Perspective view of the stepped pyramid (first 16 levels)
Crossrefs
Programs
-
Mathematica
(* total number of parts in the first n symmetric representations *) (* Function a237270[] is defined in A237270 *) (* variable "previous" represents the sum from 1 through m-1 *) a237590[previous_,{m_,n_}]:=Rest[FoldList[Plus[#1,Length[a237270[#2]]]&,previous,Range[m,n]]] a237590[n_]:=a237590[0,{1,n}] a237590[78] (* data *) (* Hartmut F. W. Hoft, Jul 07 2014 *)
Formula
Extensions
Definition clarified by Omar E. Pol, Jul 21 2018
Comments