cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A237593 Triangle read by rows in which row n lists the elements of the n-th row of A237591 followed by the same elements in reverse order.

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 7, 2, 2, 1, 1, 2, 2, 7, 7, 3, 2, 1, 1, 2, 3, 7, 8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8
Offset: 1

Views

Author

Omar E. Pol, Feb 22 2014

Keywords

Comments

Row n is a palindromic composition of 2*n.
T(n,k) is also the length of the k-th segment in a Dyck path on the first quadrant of the square grid, connecting the x-axis with the y-axis, from (n, 0) to (0, n), starting with a segment in vertical direction, see example.
Conjecture 1: the area under the n-th Dyck path equals A024916(n), the sum of all divisors of all positive integers <= n.
If the conjecture is true then the n-th Dyck path represents the boundary segments after the alternating sum of the elements of the n-th row of A236104.
Conjecture 2: two adjacent Dyck paths never cross (checked by hand up to n = 128), hence the total area between the n-th Dyck path and the (n-1)-st Dyck path is equal to sigma(n) = A000203(n), the sum of divisors of n.
The connection between A196020 and A237271 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> this sequence --> A239660 --> A237270 --> A237271.
PARI scripts area(n) and chkcross(n) have been written to check the 2 properties and have been run up to n=10000. - Michel Marcus, Mar 27 2014
Mathematica functions have been written that verified the 2 properties through n=30000. - Hartmut F. W. Hoft, Apr 07 2014
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014: (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
The symmetric representation of sigma, so defined, is row n of A237270. - Peter Munn, Jan 06 2025
It appears that, for the n-th set, the number of cells lying on the first diagonal is equal to A067742(n), the number of middle divisors of n. - Michel Marcus, Jun 21 2014
Checked Michel Marcus's conjecture with two Mathematica functions up to n=100000, for more information see A240542. - Hartmut F. W. Hoft, Jul 17 2014
A003056(n) is also the number of peaks of the Dyck path related to the n-th row of triangle. - Omar E. Pol, Nov 03 2015
The number of peaks of the Dyck path associated to the row A000396(n) of this triangle equals the n-th Mersenne prime A000668(n), hence Mersenne primes are visible in two ways at the pyramid described in A245092. - Omar E. Pol, Dec 19 2016
The limit as n approaches infinity (area under the Dyck path described in the n-th row of triangle divided by n^2) equals Pi^2/12 = zeta(2)/2. (Cf. A072691.) - Omar E. Pol, Dec 18 2021
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - Omar E. Pol, Nov 09 2022

Examples

			Triangle begins:
   n
   1 |  1, 1;
   2 |  2, 2;
   3 |  2, 1, 1, 2;
   4 |  3, 1, 1, 3;
   5 |  3, 2, 2, 3;
   6 |  4, 1, 1, 1, 1, 4;
   7 |  4, 2, 1, 1, 2, 4;
   8 |  5, 2, 1, 1, 2, 5;
   9 |  5, 2, 2, 2, 2, 5;
  10 |  6, 2, 1, 1, 1, 1, 2, 6;
  11 |  6, 3, 1, 1, 1, 1, 3, 6;
  12 |  7, 2, 2, 1, 1, 2, 2, 7;
  13 |  7, 3, 2, 1, 1, 2, 3, 7;
  14 |  8, 3, 1, 2, 2, 1, 3, 8;
  15 |  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  16 |  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  17 |  9, 4, 2, 1, 1, 1, 1, 2, 4, 9;
  18 | 10, 3, 2, 2, 1, 1, 2, 2, 3, 10;
  19 | 10, 4, 2, 2, 1, 1, 2, 2, 4, 10;
  20 | 11, 4, 2, 1, 2, 2, 1, 2, 4, 11;
  21 | 11, 4, 3, 1, 1, 1, 1, 1, 1, 3, 4, 11;
  22 | 12, 4, 2, 2, 1, 1, 1, 1, 2, 2, 4, 12;
  23 | 12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12;
  24 | 13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13;
  ...
Illustration of rows 8 and 9 interpreted as Dyck paths in the first quadrant and the illustration of the symmetric representation of sigma(9) = 5 + 3 + 5 = 13, see below:
.
y                       y
.                       .
.                       ._ _ _ _ _                _ _ _ _ _ 5
._ _ _ _ _              .         |              |_ _ _ _ _|
.         |             .         |_ _                     |_ _ 3
.         |_            .             |                    |_  |
.           |_ _        .             |_ _                   |_|_ _ 5
.               |       .                 |                      | |
.   Area = 56   |       .    Area = 69    |          Area = 13   | |
.               |       .                 |                      | |
.               |       .                 |                      | |
. . . . . . . . | . x   . . . . . . . . . | . x                  |_|
.
.    Fig. 1                    Fig. 2                  Fig. 3
.
Figure 1. For n = 8 the 8th row of triangle is [5, 2, 1, 1, 2, 5] and the area under the symmetric Dyck path is equal to A024916(8) = 56.
Figure 2. For n = 9 the 9th row of triangle is [5, 2, 2, 2, 2, 5] and the area under the symmetric Dyck path is equal to A024916(9) = 69.
Figure 3. The symmetric representation of sigma(9): between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the difference between the areas under the Dyck paths equals the sum of the parts of the symmetric representation of sigma(9) = 69 - 56 = 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
.
Illustration of initial terms as Dyck paths in the first quadrant:
(row n = 1..28)
.  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  |_ _ _ _ _ _ _ _ _ _ _ _ _  | |
  |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
  |_ _ _ _ _ _ _ _ _ _ _ _  | | |_ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _  | | |_ _  | |_
  |_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_  |_
  |_ _ _ _ _ _ _ _ _ _  | |       |_ _|   |_
  |_ _ _ _ _ _ _ _ _ _| | |_ _    |_  |_ _  |_ _
  |_ _ _ _ _ _ _ _ _  | |_ _ _|     |_  | |_ _  |
  |_ _ _ _ _ _ _ _ _| | |_ _  |_      |_|_ _  | |
  |_ _ _ _ _ _ _ _  | |_ _  |_ _|_        | | | |_ _ _ _ _
  |_ _ _ _ _ _ _ _| |     |     | |_ _    | |_|_ _ _ _ _  |
  |_ _ _ _ _ _ _  | |_ _  |_    |_  | |   |_ _ _ _ _  | | |
  |_ _ _ _ _ _ _| |_ _  |_  |_ _  | | |_ _ _ _ _  | | | | |
  |_ _ _ _ _ _  | |_  |_  |_    | |_|_ _ _ _  | | | | | | |
  |_ _ _ _ _ _| |_ _|   |_  |   |_ _ _ _  | | | | | | | | |
  |_ _ _ _ _  |     |_ _  | |_ _ _ _  | | | | | | | | | | |
  |_ _ _ _ _| |_      | |_|_ _ _  | | | | | | | | | | | | |
  |_ _ _ _  |_ _|_    |_ _ _  | | | | | | | | | | | | | | |
  |_ _ _ _| |_  | |_ _ _  | | | | | | | | | | | | | | | | |
  |_ _ _  |_  |_|_ _  | | | | | | | | | | | | | | | | | | |
  |_ _ _|   |_ _  | | | | | | | | | | | | | | | | | | | | |
  |_ _  |_ _  | | | | | | | | | | | | | | | | | | | | | | |
  |_ _|_  | | | | | | | | | | | | | | | | | | | | | | | | |
  |_  | | | | | | | | | | | | | | | | | | | | | | | | | | |
  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
n: 1 2 3 4 5 6 7 8 9 10..12..14..16..18..20..22..24..26..28
.
It appears that the total area (also the total number of cells) in the first n set of symmetric regions of the diagram is equal to A024916(n), the sum of all divisors of all positive integers <= n.
It appears that the total area (also the total number of cells) in the n-th set of symmetric regions of the diagram is equal to sigma(n) = A000203(n) (checked by hand up n = 128).
From _Omar E. Pol_, Aug 18 2015: (Start)
The above diagram is also the top view of the stepped pyramid described in A245092 and it is also the top view of the staircase described in A244580, in both cases the figure represents the first 28 levels of the structure. Note that the diagram contains (and arises from) a hidden pattern which is shown below.
.
Illustration of initial terms as an isosceles triangle:
Row                                 _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
This diagram is the simpler representation of the sequence.
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
Note that this symmetric pattern also emerges from the front view of the stepped pyramid described in A245092, which is related to sigma A000203, the sum-of-divisors function, and other related sequences. The diagram represents the first 16 levels of the pyramid. (End)
		

Crossrefs

Row n has length 2*A003056(n).
Row sums give A005843, n >= 1.
Column k starts in row A008805(k-1).
Column 1 = right border = A008619, n >= 1.
Bisections are in A259176, A259177.
For further information see A262626.

Programs

  • Mathematica
    row[n_]:=Floor[(Sqrt[8n+1]-1)/2]
    s[n_,k_]:=Ceiling[(n+1)/k-(k+1)/2]-Ceiling[(n+1)/(k+1)-(k+2)/2]
    f[n_,k_]:=If[k<=row[n],s[n,k],s[n,2 row[n]+1-k]]
    TableForm[Table[f[n,k],{n,1,50},{k,1,2 row[n]}]] (* Hartmut F. W. Hoft, Apr 08 2014 *)
  • PARI
    row(n) = {my(orow = row237591(n)); vector(2*#orow, i, if (i <= #orow, orow[i], orow[2*#orow-i+1]));}
    area(n) = {my(rown = row(n)); surf = 0; h = n; odd = 1; for (i=1, #row, if (odd, surf += h*rown[i], h -= rown[i];); odd = !odd;); surf;}
    heights(v, n) = {vh = vector(n); ivh = 1; h = n; odd = 1; for (i=1, #v, if (odd, for (j=1, v[i], vh[ivh] = h; ivh++), h -= v[i];); odd = !odd;); vh;}
    isabove(hb, ha) = {for (i=1, #hb, if (hb[i] < ha[i], return (0));); return (1);}
    chkcross(nn) = {hga = concat(heights(row(1), 1), 0); for (n=2, nn, hgb = heights(row(n), n); if (! isabove(hgb, hga), print("pb cross at n=", n)); hga = concat(hgb, 0););} \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    for n in range(1, 11): print([T(n, k) for k in range(1, 2*row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Formula

Let j(n)= floor((sqrt(8n+1)-1)/2) then T(n,k) = A237591(n,k), if k <= j(n); otherwise T(n,k) = A237591(n,2*j(n)+1-k). - Hartmut F. W. Hoft, Apr 07 2014 (corrected by Omar E. Pol, May 31 2015)

Extensions

A minor edit to the definition. - N. J. A. Sloane, Jul 31 2025

A237270 Triangle read by rows in which row n lists the parts of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 3, 2, 2, 7, 3, 3, 12, 4, 4, 15, 5, 3, 5, 9, 9, 6, 6, 28, 7, 7, 12, 12, 8, 8, 8, 31, 9, 9, 39, 10, 10, 42, 11, 5, 5, 11, 18, 18, 12, 12, 60, 13, 5, 13, 21, 21, 14, 6, 6, 14, 56, 15, 15, 72, 16, 16, 63, 17, 7, 7, 17, 27, 27, 18, 12, 18, 91, 19, 19, 30, 30, 20, 8, 8, 20, 90
Offset: 1

Views

Author

Omar E. Pol, Feb 19 2014

Keywords

Comments

T(n,k) is the number of cells in the k-th region of the n-th set of regions in a diagram of the symmetry of sigma(n), see example.
Row n is a palindromic composition of sigma(n).
Row sums give A000203.
Row n has length A237271(n).
In the row 2n-1 of triangle both the first term and the last term are equal to n.
If n is an odd prime then row n is [m, m], where m = (1 + n)/2.
The connection with A196020 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A239660 --> this sequence.
For the boundary segments in an octant see A237591.
For the boundary segments in a quadrant see A237593.
For the boundary segments in the spiral see also A239660.
For the parts in every quadrant of the spiral see A239931, A239932, A239933, A239934.
We can find the spiral on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016
T(n,k) is also the area of the k-th terrace, from left to right, at the n-th level, starting from the top, of the stepped pyramid described in A245092 (see Links section). - Omar E. Pol, Aug 14 2018

Examples

			Illustration of the first 27 terms as regions (or parts) of a spiral constructed with the first 15.5 rows of A239660:
.
.                  _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.             12 _| |                           |
.               |_ _|  _ _ _ _ _ _              |_ _
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_
.      _ _ _| |    9 _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |      _ _| |      _ _ _ _          |_  |         | |
.     | |     |  _ _| 12 _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |      _|   |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|7   _ _| |     | |     | |
.   | |     | |    4    |_                 _|  _ _|     | |     | |
.   | |     |_|_ _        |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| | 15 _|    _ _|     | |
.   |_|_ _ _        |_   4        |_ _ _ _ _|  _|     |    _ _ _| |
.  8      | |_ _      |                       |      _|   |  _ _ _|
.         |_    |     |_ _ _ _ _ _            |  _ _|28  _| |
.           |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |      _|  _|
.          8  |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|
.                 |                               |  _ _|  31
.                 |_ _ _ _ _ _ _ _                | |
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.
.
[For two other drawings of the spiral see the links. - _N. J. A. Sloane_, Nov 16 2020]
If the sequence does not contain negative terms then its terms can be represented in a quadrant. For the construction of the diagram we use the symmetric Dyck paths of A237593 as shown below:
---------------------------------------------------------------
Triangle         Diagram of the symmetry of sigma (n = 1..24)
---------------------------------------------------------------
.              _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1;            |_| | | | | | | | | | | | | | | | | | | | | | | |
3;            |_ _|_| | | | | | | | | | | | | | | | | | | | | |
2, 2;         |_ _|  _|_| | | | | | | | | | | | | | | | | | | |
7;            |_ _ _|    _|_| | | | | | | | | | | | | | | | | |
3, 3;         |_ _ _|  _|  _ _|_| | | | | | | | | | | | | | | |
12;           |_ _ _ _|  _| |  _ _|_| | | | | | | | | | | | | |
4, 4;         |_ _ _ _| |_ _|_|    _ _|_| | | | | | | | | | | |
15;           |_ _ _ _ _|  _|     |  _ _ _|_| | | | | | | | | |
5, 3, 5;      |_ _ _ _ _| |      _|_| |  _ _ _|_| | | | | | | |
9, 9;         |_ _ _ _ _ _|  _ _|    _| |    _ _ _|_| | | | | |
6, 6;         |_ _ _ _ _ _| |  _|  _|  _|   |  _ _ _ _|_| | | |
28;           |_ _ _ _ _ _ _| |_ _|  _|  _ _| | |  _ _ _ _|_| |
7, 7;         |_ _ _ _ _ _ _| |  _ _|  _|    _| | |    _ _ _ _|
12, 12;       |_ _ _ _ _ _ _ _| |     |     |  _|_|   |* * * *
8, 8, 8;      |_ _ _ _ _ _ _ _| |  _ _|  _ _|_|       |* * * *
31;           |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|* * * *
9, 9;         |_ _ _ _ _ _ _ _ _| | |_ _ _|      _|* * * * * *
39;           |_ _ _ _ _ _ _ _ _ _| |  _ _|    _|* * * * * * *
10, 10;       |_ _ _ _ _ _ _ _ _ _| | |       |* * * * * * * *
42;           |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|* * * * * * * *
11, 5, 5, 11; |_ _ _ _ _ _ _ _ _ _ _| | |* * * * * * * * * * *
18, 18;       |_ _ _ _ _ _ _ _ _ _ _ _| |* * * * * * * * * * *
12, 12;       |_ _ _ _ _ _ _ _ _ _ _ _| |* * * * * * * * * * *
60;           |_ _ _ _ _ _ _ _ _ _ _ _ _|* * * * * * * * * * *
...
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n), the sum of all divisors of all positive integers <= n, hence the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n).
For n = 9 the 9th row of A237593 is [5, 2, 2, 2, 2, 5] and the 8th row of A237593 is [5, 2, 1, 1, 2, 5] therefore between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5], so row 9 is [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the sum of the parts of the symmetric representation of sigma(9) is 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
For n = 24 the 24th row of A237593 is [13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13] and the 23rd row of A237593 is [12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12] therefore between both symmetric Dyck paths there are only one region (or part) of size 60, so row 24 is 60.
The sum of divisors of 24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = A000203(24) = 60. On the other hand the sum of the parts of the symmetric representation of sigma(24) is 60, equaling the sum of divisors of 24.
Note that the number of *'s in the diagram is 24^2 - A024916(24) = 576 - 491 = A004125(24) = 85.
From _Omar E. Pol_, Nov 22 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616 (see the theorem).
For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of A249351 :  [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of triangle:  [              8,            8,            8              ]
The 15th row
of A296508:   [              8,      7,    1,    0,      8              ]
The 15th row
of A280851    [              8,      7,    1,            8              ]
.
More generally, for n >= 1, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n.
For the definition of subparts see A239387 and also A296508, A280851. (End)
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_] := Ceiling[(n + 1)/k - (k + 1)/2] (* from A235791 *)
    path[n_] := Module[{c = Floor[(Sqrt[8n + 1] - 1)/2], h, r, d, rd, k, p = {{0, n}}}, h = Map[T[n, #] - T[n, # + 1] &, Range[c]]; r = Join[h, Reverse[h]]; d = Flatten[Table[{{1, 0}, {0, -1}}, {c}], 1];
    rd = Transpose[{r, d}]; For[k = 1, k <= 2c, k++, p = Join[p, Map[Last[p] + rd[[k, 2]] * # &, Range[rd[[k, 1]]]]]]; p]
    segments[n_] := SplitBy[Map[Min, Drop[Drop[path[n], 1], -1] - path[n - 1]], # == 0 &]
    a237270[n_] := Select[Map[Apply[Plus, #] &, segments[n]], # != 0 &]
    Flatten[Map[a237270, Range[40]]] (* data *)
    (* Hartmut F. W. Hoft, Jun 23 2014 *)

Formula

T(n, k) = (A384149(n, k) + A384149(n, m+1-k))/2, where m = A237271(n) is the row length. (conjectured) - Peter Munn, Jun 01 2025

Extensions

Drawing of the spiral extended by Omar E. Pol, Nov 22 2020

A237271 Number of parts in the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 1, 3, 2, 4, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 2, 4, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 4, 2, 2, 1, 4, 1, 4, 2, 2, 1, 2, 2, 5, 1, 4, 1, 2, 2, 4, 3, 2, 1, 2, 2, 4, 2, 3, 2, 2, 1, 5, 2, 2, 1, 4, 2, 4, 1, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 25 2014

Keywords

Comments

The diagram of the symmetry of sigma has been via A196020 --> A236104 --> A235791 --> A237591 --> A237593.
For more information see A237270.
a(n) is also the number of terraces at n-th level (starting from the top) of the stepped pyramid described in A245092. - Omar E. Pol, Apr 20 2016
a(n) is also the number of subparts in the first layer of the symmetric representation of sigma(n). For the definion of "subpart" see A279387. - Omar E. Pol, Dec 08 2016
Note that the number of subparts in the symmetric representation of sigma(n) equals A001227(n), the number of odd divisors of n. (See the second example). - Omar E. Pol, Dec 20 2016
From Hartmut F. W. Hoft, Dec 26 2016: (Start)
Using odd prime number 3, observe that the 1's in the 3^k-th row of the irregular triangle of A237048 are at index positions
3^0 < 2*3^0 < 3^1 < 2*3^1 < ... < 2*3^((k-1)/2) < 3^(k/2) < ...
the last being 2*3^((k-1)/2) when k is odd and 3^(k/2) when k is even. Since odd and even index positions alternate, each pair (3^i, 2*3^i) specifies one part in the symmetric representation with a center part present when k is even. A straightforward count establishes that the symmetric representation of 3^k, k>=0, has k+1 parts. Since this argument is valid for any odd prime, every positive integer occurs infinitely many times in the sequence. (End)
a(n) = number of runs of consecutive nonzero terms in row n of A262045. - N. J. A. Sloane, Jan 18 2021
Indices of odd terms give A071562. Indices of even terms give A071561. - Omar E. Pol, Feb 01 2021
a(n) is also the number of prisms in the three-dimensional version of the symmetric representation of k*sigma(n) where k is the height of the prisms, with k >= 1. - Omar E. Pol, Jul 01 2021
With a(1) = 0; a(n) is also the number of parts in the symmetric representation of A001065(n), the sum of aliquot parts of n. - Omar E. Pol, Aug 04 2021
The parity of this sequence is also the characteristic function of numbers that have middle divisors. - Omar E. Pol, Sep 30 2021
a(n) is also the number of polycubes in the 3D-version of the ziggurat of order n described in A347186. - Omar E. Pol, Jun 11 2024
Conjecture 1: a(n) is the number of odd divisors of n except the "e" odd divisors described in A005279. Thus a(n) is the length of the n-th row of A379288. - Omar E. Pol, Dec 21 2024
The conjecture 1 was checked up n = 10000 by Amiram Eldar. - Omar E. Pol, Dec 22 2024
The conjecture 1 is true. For a proof see A379288. - Hartmut F. W. Hoft, Jan 21 2025
From Omar E. Pol, Jul 31 2025: (Start)
Conjecture 2: a(n) is the number of 2-dense sublists of divisors of n.
We call "2-dense sublists of divisors of n" to the maximal sublists of divisors of n whose terms increase by a factor of at most 2.
In a 2-dense sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
Example: for n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2], [5, 10], so a(10) = 2.
The conjecture 2 is essentially the same as the second conjecture in the Comments of A384149. See also Peter Munn's formula in A237270.
The indices where a(n) = 1 give A174973 (2-dense numbers). See the proof there. (End)
Conjecture 3: a(n) is the number of divisors p of n such that p is greater than twice the adjacent previous divisor of n. The divisors p give the n-th row of A379288. - Omar E. Pol, Aug 02 2025

Examples

			Illustration of initial terms (n = 1..12):
---------------------------------------------------------
n   A000203  A237270    a(n)            Diagram
---------------------------------------------------------
.                               _ _ _ _ _ _ _ _ _ _ _ _
1       1      1         1     |_| | | | | | | | | | | |
2       3      3         1     |_ _|_| | | | | | | | | |
3       4      2+2       2     |_ _|  _|_| | | | | | | |
4       7      7         1     |_ _ _|    _|_| | | | | |
5       6      3+3       2     |_ _ _|  _|  _ _|_| | | |
6      12      12        1     |_ _ _ _|  _| |  _ _|_| |
7       8      4+4       2     |_ _ _ _| |_ _|_|    _ _|
8      15      15        1     |_ _ _ _ _|  _|     |
9      13      5+3+5     3     |_ _ _ _ _| |      _|
10     18      9+9       2     |_ _ _ _ _ _|  _ _|
11     12      6+6       2     |_ _ _ _ _ _| |
12     28      28        1     |_ _ _ _ _ _ _|
...
For n = 9 the sum of divisors of 9 is 1+3+9 = A000203(9) = 13. On the other hand the 9th set of symmetric regions of the diagram is formed by three regions (or parts) with 5, 3 and 5 cells, so the total number of cells is 5+3+5 = 13, equaling the sum of divisors of 9. There are three parts: [5, 3, 5], so a(9) = 3.
From _Omar E. Pol_, Dec 21 2016: (Start)
Illustration of the diagram of subparts (n = 1..12):
---------------------------------------------------------
n   A000203  A279391  A001227           Diagram
---------------------------------------------------------
.                               _ _ _ _ _ _ _ _ _ _ _ _
1       1      1         1     |_| | | | | | | | | | | |
2       3      3         1     |_ _|_| | | | | | | | | |
3       4      2+2       2     |_ _|  _|_| | | | | | | |
4       7      7         1     |_ _ _|  _ _|_| | | | | |
5       6      3+3       2     |_ _ _| |_|  _ _|_| | | |
6      12      11+1      2     |_ _ _ _|  _| |  _ _|_| |
7       8      4+4       2     |_ _ _ _| |_ _|_|  _ _ _|
8      15      15        1     |_ _ _ _ _|  _|  _| |
9      13      5+3+5     3     |_ _ _ _ _| |  _|  _|
10     18      9+9       2     |_ _ _ _ _ _| |_ _|
11     12      6+6       2     |_ _ _ _ _ _| |
12     28      23+5      2     |_ _ _ _ _ _ _|
...
For n = 6 the symmetric representation of sigma(6) has two subparts: [11, 1], so A000203(6) = 12 and A001227(6) = 2.
For n = 12 the symmetric representation of sigma(12) has two subparts: [23, 5], so A000203(12) = 28 and A001227(12) = 2. (End)
From _Hartmut F. W. Hoft_, Dec 26 2016: (Start)
Two examples of the general argument in the Comments section:
Rows 27 in A237048 and A249223 (4 parts)
i:  1  2 3 4 5 6 7 8 9 . . 12
27: 1  1 1 0 0 1                           1's in A237048 for odd divisors
    1 27 3     9                           odd divisors represented
27: 1  0 1 1 1 0 0 1 1 1 0 1               blocks forming parts in A249223
Rows 81 in A237048 and A249223 (5 parts)
i:  1  2 3 4 5 6 7 8 9 . . 12. . . 16. . . 20. . . 24
81: 1  1 1 0 0 1 0 0 1 0 0 0                          1's in A237048 f.o.d
    1 81 3    27     9                                odd div. represented
81: 1  0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1  blocks fp in A249223
(End)
		

Crossrefs

Programs

  • Mathematica
    a237271[n_] := Length[a237270[n]] (* code defined in A237270 *)
    Map[a237271, Range[90]] (* data *)
    (* Hartmut F. W. Hoft, Jun 23 2014 *)
    a[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, 1 + Count[d, ?(OddQ[#[[2]]] && #[[2]] >= 2*#[[1]] &)]]; Array[a, 100] (* _Amiram Eldar,  Dec 22 2024 *)
  • PARI
    fill(vcells, hga, hgb) = {ic = 1; for (i=1, #hgb, if (hga[i] < hgb[i], for (j=hga[i], hgb[i]-1, cell = vector(4); cell[1] = i - 1; cell[2] = j; vcells[ic] = cell; ic ++;););); vcells;}
    findfree(vcells) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
    findxy(vcells, x, y) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[1]==x) && (vcelli[2]==y) && (vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
    findtodo(vcells, iz) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == iz) && (vcelli[4] == 0), return (i)); ); return (0);}
    zcount(vcells) = {nbz = 0; for (i=1, #vcells, nbz = max(nbz, vcells[i][3]);); nbz;}
    docell(vcells, ic, iz) = {x = vcells[ic][1]; y = vcells[ic][2]; if (icdo = findxy(vcells, x-1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x+1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y-1), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y+1), vcells[icdo][3] = iz); vcells[ic][4] = 1; vcells;}
    docells(vcells, ic, iz) = {vcells[ic][3] = iz; while (ic, vcells = docell(vcells, ic, iz); ic = findtodo(vcells, iz);); vcells;}
    nbzb(n, hga, hgb) = {vcells = vector(sigma(n)); vcells = fill(vcells, hga, hgb); iz = 1; while (ic = findfree(vcells), vcells = docells(vcells, ic, iz); iz++;); zcount(vcells);}
    lista(nn) = {hga = concat(heights(row237593(0), 0), 0); for (n=1, nn, hgb = heights(row237593(n), n); nbz = nbzb(n, hga, hgb); print1(nbz, ", "); hga = concat(hgb, 0););} \\ with heights() also defined in A237593; \\ Michel Marcus, Mar 28 2014
    
  • Python
    from sympy import divisors
    def a(n: int) -> int:
        divs = list(divisors(n))
        d = [divs[i:i+2] for i in range(len(divs) - 1)]
        s = sum(1 for pair in d if len(pair) == 2 and pair[1] % 2 == 1 and pair[1] >= 2 * pair[0])
        return s + 1
    print([a(n) for n in range(1, 80)])  # Peter Luschny, Aug 05 2025

Formula

a(n) = A001227(n) - A239657(n). - Omar E. Pol, Mar 23 2014
a(p^k) = k + 1, where p is an odd prime and k >= 0. - Hartmut F. W. Hoft, Dec 26 2016
Theorem: a(n) <= number of odd divisors of n (cf. A001227). The differences are in A239657. - N. J. A. Sloane, Jan 19 2021
a(n) = A340846(n) - A340833(n) + 1 (Euler's formula). - Omar E. Pol, Feb 01 2021
a(n) = A000005(n) - A243982(n). - Omar E. Pol, Aug 02 2025

A239660 Triangle read by rows in which row n lists two copies of the n-th row of triangle A237593.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6
Offset: 1

Views

Author

Omar E. Pol, Mar 24 2014

Keywords

Comments

For the construction of this sequence also we can start from A235791.
This sequence can be interpreted as an infinite Dyck path: UDUDUUDD...
Also we use this sequence for the construction of a spiral in which the arms in the quadrants give the symmetric representation of sigma, see example.
We can find the spiral (mentioned above) on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016
The spiral has the property that the sum of the parts in the quadrants 1 and 3, divided by the sum of the parts in the quadrants 2 and 4, converges to 3/5. - Omar E. Pol, Jun 10 2019

Examples

			Triangle begins (first 15.5 rows):
1, 1, 1, 1;
2, 2, 2, 2;
2, 1, 1, 2, 2, 1, 1, 2;
3, 1, 1, 3, 3, 1, 1, 3;
3, 2, 2, 3, 3, 2, 2, 3;
4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4;
4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4;
5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5;
5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5;
6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6;
6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6;
7, 2, 2, 1, 1, 2, 2, 7, 7, 2, 2, 1, 1, 2, 2, 7;
7, 3, 2, 1, 1, 2, 3, 7, 7, 3, 2, 1, 1, 2, 3, 7;
8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 1, 2, 2, 1, 3, 8;
8, 3, 2, 1, 1, 1, 1, 2, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
9, 3, 2, 1, 1, 1, 1, 2, 3, 9, ...
.
Illustration of initial terms as an infinite Dyck path (row n = 1..4):
.
.                            /\/\    /\/\
.       /\  /\  /\/\  /\/\  /    \  /    \
.  /\/\/  \/  \/    \/    \/      \/      \
.
.
Illustration of initial terms for the construction of a spiral related to sigma:
.
.  row 1     row 2          row 3           row 4
.                                          _ _ _
.                                               |_
.             _ _                                 |
.   _ _      |                                    |
.  |   |     |                                    |
.            |         |           |              |
.            |_ _      |_         _|              |
.                        |_ _ _ _|               _|
.                                          _ _ _|
.
.[1,1,1,1] [2,2,2,2] [2,1,1,2,2,1,1,2] [3,1,1,3,3,1,1,3]
.
The first 2*A003056(n) terms of the n-th row are represented in the A010883(n-1) quadrant and the last 2*A003056(n) terms of the n-th row are represented in the A010883(n) quadrant.
.
Illustration of the spiral constructed with the first 15.5 rows of triangle:
.
.               12 _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.                _| |                           |
.               |_ _|9 _ _ _ _ _ _              |_ _
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_
.      _ _ _| |      _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |      _ _| |   12 _ _ _ _          |_  |         | |
.     | |     |  _ _|    _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |      _|   |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|    _ _| |     | |     | |
.   | |     | |    4    |_               7 _|  _ _|     | |     | |
.   | |     |_|_ _        |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| |    _|    _ _|     | |
.   |_|_ _ _        |_   4        |_ _ _ _ _|  _|     |    _ _ _| |
.  8      | |_ _      |                     15|      _|   |  _ _ _|
.         |_    |     |_ _ _ _ _ _            |  _ _|    _| |
.        8  |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |      _|  _|
.             |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|
.                 |                             28|  _ _|
.                 |_ _ _ _ _ _ _ _                | |
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.                                                    31
.
The diagram contains A237590(16) = 27 parts.
The total area (also the total number of cells) in the n-th arm of the spiral is equal to sigma(n) = A000203(n), considering every quadrant and the axes x and y. (checked by hand up to row n = 128). The parts of the spiral are in A237270: 1, 3, 2, 2, 7...
Diagram extended by _Omar E. Pol_, Aug 23 2018
		

Crossrefs

Row n has length 4*A003056(n).
The sum of row n is equal to 4*n = A008586(n).
Row n is a palindromic composition of 4*n = A008586(n).
Both column 1 and right border are A008619, n >= 1.
The connection between A196020 and A237270 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> this sequence --> A237270.

A060831 a(n) = Sum_{k=1..n} (number of odd divisors of k) (cf. A001227).

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 9, 11, 12, 15, 17, 19, 21, 23, 25, 29, 30, 32, 35, 37, 39, 43, 45, 47, 49, 52, 54, 58, 60, 62, 66, 68, 69, 73, 75, 79, 82, 84, 86, 90, 92, 94, 98, 100, 102, 108, 110, 112, 114, 117, 120, 124, 126, 128, 132, 136, 138, 142, 144, 146, 150, 152, 154, 160
Offset: 0

Views

Author

Henry Bottomley, May 01 2001

Keywords

Comments

The old definition was "Number of sums less than or equal to n of sequences of consecutive positive integers (including sequences of length 1)."
In other words, a(n) is also the total number of partitions of all positive integers <= n into consecutive parts, n >= 1. - Omar E. Pol, Dec 03 2020
Starting with 1 = row sums of triangle A168508. - Gary W. Adamson, Nov 27 2009
The subsequence of primes in this sequence begins, through a(100): 2, 5, 7, 11, 17, 19, 23, 29, 37, 43, 47, 73, 79, 173, 181, 223, 227, 229, 233, 263. - Jonathan Vos Post, Feb 13 2010
Apart from the initial zero, a(n) is also the total number of subparts of the symmetric representations of sigma of all positive integers <= n. Hence a(n) is also the total number of subparts in the terraces of the stepped pyramid with n levels described in A245092. For more information see A279387 and A237593. - Omar E. Pol, Dec 17 2016
a(n) is also the total number of partitions of all positive integers <= n into an odd number of equal parts. - Omar E. Pol, May 14 2017
Zero together with the row sums of A235791. - Omar E. Pol, Dec 18 2020

Examples

			E.g., for a(7), we consider the odd divisors of 1,2,3,4,5,6,7, which gives 1,1,2,1,2,2,2 = 11. - _Jon Perry_, Mar 22 2004
Example illustrating the old definition: a(7) = 11 since 1, 2, 3, 4, 5, 6, 7, 1+2, 2+3, 3+4, 1+2+3 are all 7 or less.
From _Omar E. Pol_, Dec 02 2020: (Start)
Illustration of initial terms:
                              Diagram
   n   a(n)
   0     0                          _|
   1     1                        _|1|
   2     2                      _|1 _|
   3     4                    _|1  |1|
   4     5                  _|1   _| |
   5     7                _|1    |1 _|
   6     9              _|1     _| |1|
   7    11            _|1      |1  | |
   8    12          _|1       _|  _| |
   9    15        _|1        |1  |1 _|
  10    17      _|1         _|   | |1|
  11    19    _|1          |1   _| | |
  12    21   |1            |   |1  | |
...
a(n) is also the total number of horizontal line segments in the first n levels of the diagram. For n = 5 there are seven horizontal line segments, so a(5) = 7. Cf. A237048, A286001. (End)
From _Omar E. Pol_, Dec 19 2020: (Start)
a(n) is also the number of regions in the diagram of the symmetries of sigma after n stages, including the subparts, as shown below (Cf. A279387):
.                                                         _ _ _ _
.                                           _ _ _        |_ _ _  |_
.                               _ _ _      |_ _ _|       |_ _ _| |_|_
.                     _ _      |_ _  |_    |_ _  |_ _    |_ _  |_ _  |
.             _ _    |_ _|_    |_ _|_  |   |_ _|_  | |   |_ _|_  | | |
.       _    |_  |   |_  | |   |_  | | |   |_  | | | |   |_  | | | | |
.      |_|   |_|_|   |_|_|_|   |_|_|_|_|   |_|_|_|_|_|   |_|_|_|_|_|_|
.
.  0    1      2        4          5            7              9
(End)
		

Crossrefs

Zero together with the partial sums of A001227.

Programs

  • Maple
    A060831 := proc(n)
        add(numtheory[tau](n-i+1),i=1..ceil(n/2)) ;
    end proc:
    seq(A060831(n),n=0..100) ; # Wesley Ivan Hurt, Oct 02 2013
  • Mathematica
    f[n_] := Sum[ -(-1^k)Floor[n/(2k - 1)], {k, n}]; Table[ f[n], {n, 0, 65}] (* Robert G. Wilson v, Jun 16 2006 *)
    Accumulate[Table[Count[Divisors[n],?OddQ],{n,0,70}]] (* _Harvey P. Dale, Nov 26 2023 *)
  • PARI
    a(n)=local(c);c=0;for(i=1,n,c+=sumdiv(i,X,X%2));c
    
  • PARI
    for (n=0, 1000, s=n; d=3; while (n>=d, s+=n\d; d+=2); write("b060831.txt", n, " ", s); ) \\ Harry J. Smith, Jul 12 2009
    
  • PARI
    a(n)=my(n2=n\2); sum(k=1, sqrtint(n), n\k)*2-sqrtint(n)^2-sum(k=1, sqrtint(n2), n2\k)*2+sqrtint(n2)^2 \\ Charles R Greathouse IV, Jun 18 2015
    
  • Python
    def A060831(n): return n+sum(n//i for i in range(3,n+1,2)) # Chai Wah Wu, Jul 16 2022
    
  • Python
    from math import isqrt
    def A060831(n): return ((t:=isqrt(m:=n>>1))+(s:=isqrt(n)))*(t-s)+(sum(n//k for k in range(1,s+1))-sum(m//k for k in range(1,t+1))<<1) # Chai Wah Wu, Oct 23 2023

Formula

a(n) = Sum_{i=1..n} A001227(i).
a(n) = a(n-1) + A001227(n).
a(n) = n + floor(n/3) + floor(n/5) + floor(n/7) + floor(n/9) + ...
a(n) = A006218(n) - A006218(floor(n/2)).
a(n) = Sum_{i=1..ceiling(n/2)} A000005(n-i+1). - Wesley Ivan Hurt, Sep 30 2013
a(n) = Sum_{i=floor((n+2)/2)..n} A000005(i). - N. J. A. Sloane, Dec 06 2020, modified by Xiaohan Zhang, Nov 07 2022
G.f.: (1/(1 - x))*Sum_{k>=1} x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 23 2016
a(n) ~ n*(log(2*n) + 2*gamma - 1) / 2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 30 2019

Extensions

Definition simplified by N. J. A. Sloane, Dec 05 2020

A340833 a(n) is the number of vertices in the diagram of the symmetric representation of sigma(n).

Original entry on oeis.org

4, 6, 7, 10, 9, 12, 11, 14, 14, 15, 13, 18, 13, 17, 20, 22, 15, 22, 15, 22, 23, 21, 17, 26, 22, 21, 25, 28, 19, 30, 19, 30, 27, 23, 26, 32, 21, 25, 29, 34, 21, 34, 21, 33, 36, 27, 23, 38, 30, 38, 31, 35, 23, 38, 35, 42, 33, 29, 25, 42, 25, 29, 42, 42, 37, 44, 27
Offset: 1

Views

Author

Omar E. Pol, Jan 23 2021

Keywords

Comments

If A237271(n) is odd then a(n) is even.
If A237271(n) is even then a(n) is odd.
The above sentences arise that the diagram is always symmetric for any value of n hence the number of edges is always an even number. Also from Euler's formula.
Indices of odd terms give A071561.
Indices of even terms give A071562.
For another version with subparts see A340847 from which first differs at a(6).
The parity of this sequence is also the characteristic function of numbers that have no middle divisors (cf. A348327). - Omar E. Pol, Oct 14 2021

Examples

			Illustration of initial terms:
.                                                          _ _ _ _
.                                            _ _ _        |_ _ _  |_
.                                _ _ _      |_ _ _|             |   |_
.                      _ _      |_ _  |_          |_ _          |_ _  |
.              _ _    |_ _|_        |_  |           | |             | |
.        _    |_  |       | |         | |           | |             | |
.       |_|     |_|       |_|         |_|           |_|             |_|
.
n:       1      2        3          4           5               6
a(n):    4      6        7         10           9              12
.
For n = 6 the diagram has 12 vertices so a(6) = 12.
On the other hand the diagram has 12 edges and only one part or region, so applying Euler's formula we have that a(6) = 12 - 1 + 1 = 12.
.                                                  _ _ _ _ _
.                            _ _ _ _ _            |_ _ _ _ _|
.        _ _ _ _            |_ _ _ _  |                     |_ _
.       |_ _ _ _|                   | |_                    |_  |
.               |_                  |_  |_ _                  |_|_ _
.                 |_ _                |_ _  |                     | |
.                   | |                   | |                     | |
.                   | |                   | |                     | |
.                   | |                   | |                     | |
.                   |_|                   |_|                     |_|
.
n:              7                    8                      9
a(n):          11                   14                     14
.
For n = 9 the diagram has 14 vertices so a(9) = 14.
On the other hand the diagram has 16 edges and three parts or regions, so applying Euler's formula we have that a(9) = 16 - 3 + 1 = 14.
Another way for the illustration of initial terms is as follows:
--------------------------------------------------------------------------
.  n  a(n)                             Diagram
--------------------------------------------------------------------------
            _
   1   4   |_|  _
              _| |  _
   2   6     |_ _| | |  _
                _ _|_| | |  _
   3   7       |_ _|  _| | | |  _
                  _ _|  _| | | | |  _
   4  10         |_ _ _|  _|_| | | | |  _
                    _ _ _|  _ _| | | | | |  _
   5   9           |_ _ _| |    _| | | | | | |  _
                      _ _ _|  _|  _|_| | | | | | |  _
   6  12             |_ _ _ _|  _|  _ _| | | | | | | |  _
                        _ _ _ _|  _|  _ _| | | | | | | | |  _
   7  11               |_ _ _ _| |  _|  _ _|_| | | | | | | | |  _
                          _ _ _ _| |  _| |  _ _| | | | | | | | | |  _
   8  14                 |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |  _
                            _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |
   9  14                   |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | |
                              _ _ _ _ _| |  _|  _|    _ _| | | | | | | | |
  10  15                     |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | |
                                _ _ _ _ _ _| |      _| |  _ _ _| | | | | |
  11  13                       |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | |
                                  _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | |
  12  18                         |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| |
                                    _ _ _ _ _ _ _| |  _| |    _| |  _ _ _|
  13  13                           |_ _ _ _ _ _ _| | |  _|  _|  _| |
                                      _ _ _ _ _ _ _| | |_ _|  _|  _|
  14  17                             |_ _ _ _ _ _ _ _| |  _ _|  _|
                                        _ _ _ _ _ _ _ _| |  _ _|
  15  20                               |_ _ _ _ _ _ _ _| | |
                                          _ _ _ _ _ _ _ _| |
  16  22                                 |_ _ _ _ _ _ _ _ _|
...
		

Crossrefs

Parity gives A348327.
Cf. A237271 (number of parts or regions).
Cf. A340846 (number of edges).
Cf. A340847 (number of vertices in the diagram with subparts).
Cf. A294723 (total number of vertices in the unified diagram).
Cf. A239931-A239934 (illustration of first 32 diagrams).

Programs

  • Mathematica
    MapAt[# + 1 &, #, 1] &@ Map[Length@ Union[Join @@ #] - 1 &, Partition[Prepend[#, {{0, 0}}], 2, 1]] &@ Table[{{0, 0}}~Join~Accumulate[Join[#, Reverse[Reverse /@ (-1*#)]]] &@ MapIndexed[Which[#2 == 1, {#1, 0}, Mod[#2, 2] == 0, {0, #1}, True, {-#1, 0}] & @@ {#1, First[#2]} &, If[Length[#] == 0, {n, n}, Join[{n}, #, {n - Total[#]}]]] &@ Differences[n - Array[(Ceiling[(n + 1)/# - (# + 1)/2]) &, Floor[(Sqrt[8 n + 1] - 1)/2]]], {n, 67}] (* Michael De Vlieger, Oct 27 2021 *)

Formula

a(n) = A340846(n) - A237271(n) + 1 (Euler's formula).

Extensions

Terms a(33) and beyond from Michael De Vlieger, Oct 27 2021

A294723 a(n) is the total number of vertices after n-th stage in the diagram of the symmetries of sigma described in A236104, with a(0) = 1.

Original entry on oeis.org

1, 4, 7, 11, 16, 20, 27, 31, 38, 45, 53, 57, 66, 70, 78, 89, 100, 104, 115, 119, 130, 142, 150, 154, 167, 176, 184, 196, 211, 215, 230, 234, 249, 261, 269, 280, 297, 301, 309, 321, 338, 342, 359, 363, 379, 398, 406, 410, 429, 440, 459, 471, 487, 491, 510
Offset: 0

Views

Author

Omar E. Pol, Nov 07 2017

Keywords

Comments

a(n) is also the total number of "hinges" in the "mechanism" where every row of the two-dimensional diagram of the isosceles triangle with n rows described in A237593 is folded in a 90-degree zig-zag, appearing the structure of the stepped pyramid with n levels described in A245092. Note that the diagram described in A236104 is also the top view of the mentioned pyramid. The area of the terraces in the n-th level of the pyramid, starting from the top, equals sigma(n) = A000203(n).
For the construction of the two-dimensional diagram using Dyck paths and for more information about the pyramid see A237593 and A262626.
Note that every line segment of the Dyck paths of the diagram is related to partitions into consecutive parts (see A237591). - Omar E. Pol, Feb 23 2018

Examples

			Illustration of initial terms (n = 0..9):
.                                                           _ _ _ _
.                                             _ _ _        |_ _ _  |_
.                                 _ _ _      |_ _ _|       |_ _ _|   |_
.                       _ _      |_ _  |_    |_ _  |_ _    |_ _  |_ _  |
.               _ _    |_ _|_    |_ _|_  |   |_ _|_  | |   |_ _|_  | | |
.         _    |_  |   |_  | |   |_  | | |   |_  | | | |   |_  | | | | |
.    .   |_|   |_|_|   |_|_|_|   |_|_|_|_|   |_|_|_|_|_|   |_|_|_|_|_|_|
.
.    1    4      7        11         16           20             27
.
.
.                                               _ _ _ _ _
.                         _ _ _ _ _            |_ _ _ _ _|
.     _ _ _ _            |_ _ _ _  |           |_ _ _ _  |_ _
.    |_ _ _ _|           |_ _ _ _| |_          |_ _ _ _| |_  |
.    |_ _ _  |_          |_ _ _  |_  |_ _      |_ _ _  |_  |_|_ _
.    |_ _ _|   |_ _      |_ _ _|   |_ _  |     |_ _ _|   |_ _  | |
.    |_ _  |_ _  | |     |_ _  |_ _  | | |     |_ _  |_ _  | | | |
.    |_ _|_  | | | |     |_ _|_  | | | | |     |_ _|_  | | | | | |
.    |_  | | | | | |     |_  | | | | | | |     |_  | | | | | | | |
.    |_|_|_|_|_|_|_|     |_|_|_|_|_|_|_|_|     |_|_|_|_|_|_|_|_|_|
.
.           31                  38                     45
.
.
Illustration of the diagram after 29 stages (contain 215 vertices, 268 edges and 54 regions or parts):
._ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|_ _ _ _ _ _ _ _ _ _ _ _ _ _  |
|_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
|_ _ _ _ _ _ _ _ _ _ _ _ _  | |
|_ _ _ _ _ _ _ _ _ _ _ _ _| | |
|_ _ _ _ _ _ _ _ _ _ _ _  | | |_ _ _
|_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _  |
|_ _ _ _ _ _ _ _ _ _ _  | | |_ _  | |_
|_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_  |_
|_ _ _ _ _ _ _ _ _ _  | |       |_ _|   |_
|_ _ _ _ _ _ _ _ _ _| | |_ _    |_  |_ _  |_ _
|_ _ _ _ _ _ _ _ _  | |_ _ _|     |_  | |_ _  |
|_ _ _ _ _ _ _ _ _| | |_ _  |_      |_|_ _  | |
|_ _ _ _ _ _ _ _  | |_ _  |_ _|_        | | | |_ _ _ _ _ _
|_ _ _ _ _ _ _ _| |     |     | |_ _    | |_|_ _ _ _ _  | |
|_ _ _ _ _ _ _  | |_ _  |_    |_  | |   |_ _ _ _ _  | | | |
|_ _ _ _ _ _ _| |_ _  |_  |_ _  | | |_ _ _ _ _  | | | | | |
|_ _ _ _ _ _  | |_  |_  |_    | |_|_ _ _ _  | | | | | | | |
|_ _ _ _ _ _| |_ _|   |_  |   |_ _ _ _  | | | | | | | | | |
|_ _ _ _ _  |     |_ _  | |_ _ _ _  | | | | | | | | | | | |
|_ _ _ _ _| |_      | |_|_ _ _  | | | | | | | | | | | | | |
|_ _ _ _  |_ _|_    |_ _ _  | | | | | | | | | | | | | | | |
|_ _ _ _| |_  | |_ _ _  | | | | | | | | | | | | | | | | | |
|_ _ _  |_  |_|_ _  | | | | | | | | | | | | | | | | | | | |
|_ _ _|   |_ _  | | | | | | | | | | | | | | | | | | | | | |
|_ _  |_ _  | | | | | | | | | | | | | | | | | | | | | | | |
|_ _|_  | | | | | | | | | | | | | | | | | | | | | | | | | |
|_  | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
		

Crossrefs

Cf. A317109 (number of edges).
Cf. A237590 (number of regions or parts).
Compare with A317293 (analog for the diagram that contains subparts).

Formula

a(n) = A317109(n) - A237590(n) + 1 (Euler's formula). - Omar E. Pol, Jul 21 2018

Extensions

Terms a(30) and beyond from Robert Price, Jul 31 2018
Example extended for a(7)-a(9) and a(29) by Omar E. Pol, Jul 31 2018

A317109 a(n) is the total number of edges after n-th stage in the diagram of the symmetries of sigma described in A236104, with a(0) = 0.

Original entry on oeis.org

0, 4, 8, 14, 20, 26, 34, 40, 48, 58, 68, 74, 84, 90, 100, 114, 126, 132, 144, 150, 162, 178, 188, 194, 208, 220, 230, 246, 262, 268, 284, 290, 306, 322, 332, 346, 364, 370, 380, 396, 414, 420, 438, 444, 462, 484, 494, 500, 520, 534, 556, 572, 590, 596, 616, 636
Offset: 0

Views

Author

Omar E. Pol, Jul 21 2018

Keywords

Comments

All terms are even numbers.
Note that the two-dimensional diagram is also the top view of the stepped pyramid with n levels described in A245092.
For the construction of the two-dimensional diagram using Dyck paths and for more information about the pyramid see A237593.

Examples

			Illustration of initial terms (n = 1..9):
.                                                       _ _ _ _
.                                         _ _ _        |_ _ _  |_
.                             _ _ _      |_ _ _|       |_ _ _|   |_
.                   _ _      |_ _  |_    |_ _  |_ _    |_ _  |_ _  |
.           _ _    |_ _|_    |_ _|_  |   |_ _|_  | |   |_ _|_  | | |
.     _    |_  |   |_  | |   |_  | | |   |_  | | | |   |_  | | | | |
.    |_|   |_|_|   |_|_|_|   |_|_|_|_|   |_|_|_|_|_|   |_|_|_|_|_|_|
.
.     4      8        14         20           26             34
.
.                                               _ _ _ _ _
.                         _ _ _ _ _            |_ _ _ _ _|
.     _ _ _ _            |_ _ _ _  |           |_ _ _ _  |_ _
.    |_ _ _ _|           |_ _ _ _| |_          |_ _ _ _| |_  |
.    |_ _ _  |_          |_ _ _  |_  |_ _      |_ _ _  |_  |_|_ _
.    |_ _ _|   |_ _      |_ _ _|   |_ _  |     |_ _ _|   |_ _  | |
.    |_ _  |_ _  | |     |_ _  |_ _  | | |     |_ _  |_ _  | | | |
.    |_ _|_  | | | |     |_ _|_  | | | | |     |_ _|_  | | | | | |
.    |_  | | | | | |     |_  | | | | | | |     |_  | | | | | | | |
.    |_|_|_|_|_|_|_|     |_|_|_|_|_|_|_|_|     |_|_|_|_|_|_|_|_|_|
.
.           40                  48                     58
.
.
Illustration of the diagram after 29 stages (contain 268 edges, 215 vertices and 54 regions or parts):
._ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|_ _ _ _ _ _ _ _ _ _ _ _ _ _  |
|_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
|_ _ _ _ _ _ _ _ _ _ _ _ _  | |
|_ _ _ _ _ _ _ _ _ _ _ _ _| | |
|_ _ _ _ _ _ _ _ _ _ _ _  | | |_ _ _
|_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _  |
|_ _ _ _ _ _ _ _ _ _ _  | | |_ _  | |_
|_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_  |_
|_ _ _ _ _ _ _ _ _ _  | |       |_ _|   |_
|_ _ _ _ _ _ _ _ _ _| | |_ _    |_  |_ _  |_ _
|_ _ _ _ _ _ _ _ _  | |_ _ _|     |_  | |_ _  |
|_ _ _ _ _ _ _ _ _| | |_ _  |_      |_|_ _  | |
|_ _ _ _ _ _ _ _  | |_ _  |_ _|_        | | | |_ _ _ _ _ _
|_ _ _ _ _ _ _ _| |     |     | |_ _    | |_|_ _ _ _ _  | |
|_ _ _ _ _ _ _  | |_ _  |_    |_  | |   |_ _ _ _ _  | | | |
|_ _ _ _ _ _ _| |_ _  |_  |_ _  | | |_ _ _ _ _  | | | | | |
|_ _ _ _ _ _  | |_  |_  |_    | |_|_ _ _ _  | | | | | | | |
|_ _ _ _ _ _| |_ _|   |_  |   |_ _ _ _  | | | | | | | | | |
|_ _ _ _ _  |     |_ _  | |_ _ _ _  | | | | | | | | | | | |
|_ _ _ _ _| |_      | |_|_ _ _  | | | | | | | | | | | | | |
|_ _ _ _  |_ _|_    |_ _ _  | | | | | | | | | | | | | | | |
|_ _ _ _| |_  | |_ _ _  | | | | | | | | | | | | | | | | | |
|_ _ _  |_  |_|_ _  | | | | | | | | | | | | | | | | | | | |
|_ _ _|   |_ _  | | | | | | | | | | | | | | | | | | | | | |
|_ _  |_ _  | | | | | | | | | | | | | | | | | | | | | | | |
|_ _|_  | | | | | | | | | | | | | | | | | | | | | | | | | |
|_  | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
		

Crossrefs

Cf. A294723 (number of vertices).
Cf. A237590 (number of regions or parts).
Compare with A317292 (analog for the diagram that contains subparts).

Formula

a(n) = A294723(n) + A237590(n) - 1 (Euler's formula).

Extensions

More terms and b-file from Robert Price, Jul 31 2018

A090196 Odd integers with two divisors a, b such that a < b <= 2a.

Original entry on oeis.org

15, 35, 45, 63, 75, 77, 91, 99, 105, 117, 135, 143, 153, 165, 175, 187, 189, 195, 209, 221, 225, 231, 245, 247, 255, 273, 285, 297, 299, 315, 323, 325, 345, 351, 357, 375, 385, 391, 399, 405, 425, 429, 435, 437, 441, 455, 459, 465, 475, 483, 493, 495, 513, 525, 527, 539, 551, 555
Offset: 1

Views

Author

Steven Finch, Jan 22 2004

Keywords

Comments

Clearly all even integers have two such divisors a, b. Consider the set S of all integers satisfying this property. Maier & Tenenbaum proved Erdős' conjecture that S has asymptotic density 1.
A244579 and the present sequences are complements in the sequence of odd numbers. - Hartmut F. W. Hoft, Dec 10 2016
From Omar E. Pol, Jan 10 2017: (Start)
Odd numbers k with the property that the number of parts in the symmetric representation of sigma(k) is not equal to the number of divisors of k.
Odd numbers that are not in A244579.
All terms are composites. (End)
The subsequence of semiprimes is A082663. - Bernard Schott, Apr 17 2022

References

  • R. R. Hall and G. Tenenbaum, Divisors, Cambridge Univ. Press, 1988, pp. 95-99.

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 999, 2], (Divisors[#] /. {_, a_, _, b_, _} /; a < b <= 2a -> True) === True&] (* Jean-François Alcover, Nov 05 2016 *)
  • PARI
    is(n)=my(d=divisors(n));for(i=2,#d\2+1,if(d[i]<2*d[i-1], return(n%2))); 0 \\ Charles R Greathouse IV, Jun 20 2013

Formula

a(n) ~ 2n. - Charles R Greathouse IV, Jun 20 2013

Extensions

Corrected by Charles R Greathouse IV, Jul 23 2012
Corrected by Jean-François Alcover and Charles R Greathouse IV, Jun 20 2013

A244970 Total number of regions after n-th stage in the diagram of the symmetric representation of sigma on the four quadrants.

Original entry on oeis.org

1, 2, 6, 7, 11, 12, 16, 17, 25, 29, 33, 34, 38, 42, 50, 51, 55, 56, 60, 61, 73, 77, 81, 82, 90, 94, 106, 107, 111, 112, 116, 117, 129, 133, 141, 142, 146, 150, 162, 163, 167, 168, 172, 176, 184, 188, 192, 193, 201, 209, 221, 225, 229, 230, 242, 243, 255, 259, 263, 264
Offset: 1

Views

Author

Omar E. Pol, Jul 08 2014

Keywords

Comments

Partial sums of A244971.
If we use toothpicks of length 1/2, so the area of the central square is equal to 1. The total area of the structure after n-th stage is equal to A024916(n), the sum of all divisors of all positive integers <= n, hence the total area of the n-th set of symmetric regions added at n-th stage is equal to sigma(n) = A000203(n), the sum of divisors of n.
If we use toothpicks of length 1, so the number of cells (and the area) of the central square is equal to 4. The number of cells (and the total area) of the structure after n-th stage is equal to 4*A024916(n) = A243980(n), hence the number of cells (and the total area) of the n-th set of symmetric regions added at n-th stage is equal to 4*A000203(n) = A239050(n).
a(n) is also the total number of terraces of the stepped pyramid with n levels described in A244050. - Omar E. Pol, Apr 20 2016

Examples

			Illustration of the structure after 15 stages (contains 50 regions):
.
.                   _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.                  |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.               _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _
.             _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_
.           _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_
.          |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  |
.     _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _
.    | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | |
.    | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | |
.    | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | |
.    | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | |
.    | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | |
.    | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | |
.    | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | |
.    | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | |
.    | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | |
.    | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | |
.    | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | |
.    | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | |
.    | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | |
.    | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | |
.    | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | |
.    |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_|
.          | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |
.          |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _|
.            |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|
.              |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|
.                  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.                  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram is also the top view of the stepped pyramid with 15 levels described in A244050. - _Omar E. Pol_, Apr 20 2016
		

Crossrefs

Showing 1-10 of 19 results. Next