cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237618 a(n) = n*(n + 1)*(19*n - 16)/6.

Original entry on oeis.org

0, 1, 22, 82, 200, 395, 686, 1092, 1632, 2325, 3190, 4246, 5512, 7007, 8750, 10760, 13056, 15657, 18582, 21850, 25480, 29491, 33902, 38732, 44000, 49725, 55926, 62622, 69832, 77575, 85870, 94736, 104192, 114257, 124950, 136290, 148296, 160987, 174382
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2014

Keywords

Comments

Also 21-gonal (or icosihenagonal) pyramidal numbers.

Examples

			After 0, the sequence is provided by the row sums of the triangle:
   1;
   2,  20;
   3,  40,  39;
   4,  60,  78,  58;
   5,  80, 117, 116, 77;
   6, 100, 156, 174, 154, 96;
   7, 120, 195, 232, 231, 192, 115;
   8, 140, 234, 290, 308, 288, 230, 134;
   9, 160, 273, 348, 385, 384, 345, 268, 153;
  10, 180, 312, 406, 462, 480, 460, 402, 306, 172; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 19*r-18 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (nineteenth row of the table).

Crossrefs

Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(19*n-16)/6: n in [0..40]];
    
  • Magma
    I:=[0,1,22,82]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    Table[n(n+1)(19n-16)/6, {n, 0, 40}]
    CoefficientList[Series[x(1+18x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • SageMath
    b=binomial; [b(n+2,3) +18*b(n+1,3) for n in (0..50)] # G. C. Greubel, May 27 2022

Formula

G.f.: x*(1 + 18*x) / (1 - x)^4.
a(n) = (1/2)*( n*A226490(n) - Sum_{j=0..n-1} A226490(j) ).
a(n) = Sum_{i=0..n-1} (n-i)*(19*i+1), for n>0; see the generalization in A237616 (Formula field).
From G. C. Greubel, May 27 2022: (Start)
a(n) = binomial(n+2, 3) + 18*binomial(n+1, 3).
E.g.f.: (1/6)*x*(6 + 60*x + 19*x^2)*exp(x). (End)