cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A237655 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n-2)*Fibonacci(n+2) * x^n/n ).

Original entry on oeis.org

1, 10, 50, 175, 510, 1376, 3625, 9500, 24875, 65125, 170500, 446375, 1168625, 3059500, 8009875, 20970125, 54900500, 143731375, 376293625, 985149500, 2579154875, 6752315125, 17677790500, 46281056375, 121165378625, 317215079500, 830479859875, 2174224500125, 5692193640500, 14902356421375, 39014875623625
Offset: 0

Views

Author

Paul D. Hanna, May 05 2014

Keywords

Comments

Given g.f. A(x), note that A(x)^(1/5) is not an integer series.

Examples

			G.f.: A(x) = 1 + 10*x + 50*x^2 + 175*x^3 + 510*x^4 + 1376*x^5 + 3625*x^6 + ...
where the logarithm begins:
log(A(x)) = 5*1*2*x + 5*0*3*x^2/2 + 5*1*5*x^3/3 + 5*1*8*x^4/4 + 5*2*13*x^5/5 + 5*3*21*x^6/6 + 5*5*34*x^7/7 + 5*8*55*x^8/8 + 5*13*89*x^9/9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, 5*fibonacci(m-2)*fibonacci(m+2) *x^m/m) +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: (1+x)^7 / (1-3*x+x^2).
a(n) = 3*a(n-1) - a(n-2), n>=8. - Fung Lam, May 19 2014
Showing 1-1 of 1 results.