cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A237654 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n-1)*Fibonacci(n+1) * x^n/n ).

Original entry on oeis.org

1, 0, 5, 5, 25, 49, 150, 365, 990, 2550, 6726, 17550, 46015, 120390, 315275, 825299, 2160775, 5656855, 14809980, 38772875, 101508876, 265753500, 695751900, 1821501900, 4768754125, 12484760124, 32685526625, 85571819345, 224029931845, 586517975725, 1535523995826, 4020054011225, 10524638038410
Offset: 0

Views

Author

Paul D. Hanna, May 05 2014

Keywords

Comments

Compare to the g.f. of A054888.
Given g.f. A(x), note that A(x)^(1/5) is not an integer series.

Examples

			G.f.: A(x) = 1 + 5*x^2 + 5*x^3 + 25*x^4 + 49*x^5 + 150*x^6 + 365*x^7 + ...
where the logarithm begins:
log(A(x)) = 5*1*2*x^2/2 + 5*1*3*x^3/3 + 5*2*5*x^4/4 + 5*3*8*x^5/5 + 5*5*13*x^6/6 + 5*8*21*x^7/7 + 5*13*34*x^8/8 + ...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,5,5,0,-1},{1,0,5,5,25},40] (* Harvey P. Dale, Apr 17 2025 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, 5*fibonacci(m-1)*fibonacci(m+1)*x^m/m) + x*O(x^n)), n)}
    for(n=0,36,print1(a(n),", "))

Formula

G.f.: 1 / ( (1-3*x+x^2) * (1+x)^3 ).
a(n) = (2*Lucas(2*n+5) + (28+25*n+5*n^2)*(-1)^(n))/50 where Lucas = A000032. - Greg Dresden, Jan 01 2021
Showing 1-1 of 1 results.