cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237714 Expansion of (1 + x)/(1 - x^2 - 2*x^5).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 5, 5, 7, 11, 13, 21, 23, 35, 45, 61, 87, 107, 157, 197, 279, 371, 493, 685, 887, 1243, 1629, 2229, 2999, 4003, 5485, 7261, 9943, 13259, 17949, 24229, 32471, 44115, 58989, 80013, 107447, 144955, 195677, 262933, 355703, 477827, 645613, 869181, 1171479, 1580587
Offset: 0

Views

Author

Sergio Falcon, Feb 12 2014

Keywords

Crossrefs

Programs

  • Mathematica
    For[j = 0, j < 5, j++, a[j] = 1]
    For[j = 5, j < 51, j++, a[j] = 2 a[j - 5] + a[j - 2]]
    Table[a[j], {j, 0, 50}]
    CoefficientList[Series[(1 + x)/(1 - x^2 - 2 x^5), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
    LinearRecurrence[{0,1,0,0,2},{1,1,1,1,1},70] (* Harvey P. Dale, Nov 24 2024 *)
  • PARI
    Vec( (1 + x)/(1 - x^2 - 2*x^5) + O(x^66) ) \\ Joerg Arndt, Feb 24 2014

Formula

a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(n) = 2*a(n-5) + a(n-2) for n>=5.
a(2n) = sum_{j=0}^{n/5}C(n-3j,2j)*2^(2j)+sum_{j=0}^{(n-3)/5} C(n-2-3j,2j+1)*2^(2j+1).
a(2n+1) = sum_{j=0}^{n/5}C(n-3j,2j)*2^(2j)+sum_{j=0}^{(n-2)/5} C(n-1-3j,2j+1)*2^(2j+1).