cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237767 Integers whose product of digits is a nonzero cube.

Original entry on oeis.org

1, 8, 11, 18, 24, 39, 42, 81, 88, 93, 111, 118, 124, 139, 142, 181, 188, 193, 214, 222, 241, 248, 284, 319, 333, 389, 391, 398, 412, 421, 428, 444, 469, 482, 496, 555, 649, 666, 694, 777, 811, 818, 824, 839, 842, 881, 888, 893, 913, 931
Offset: 1

Views

Author

Derek Orr, Feb 12 2014

Keywords

Comments

No number with a 0 in it (A011540) can be in this sequence. If a number is in this sequence, then so is its reversal of digits (A004086) and other permutations of its digits. - Alonso del Arte, Feb 20 2014

Examples

			3*9*1 = 27 = 3^3, thus 391 is a member of this sequence.
3*9*8 = 216 = 6^3, thus 398 is a member of this sequence.
4*2*8 = 64 = 4^3, thus 428 is a member of this sequence.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local T;
      T:= Statistics:-Tally(convert(n,base,10),output=table);
      if assigned(T[0]) then return false fi;
      eval(T[2] + 2*T[4] + T[6] mod 3, T = [0$6]) = 0
      and eval(T[3] + T[6] + 2*T[9] mod 3, T = [0$9]) = 0
      and member(T[5] mod 3, [0,'T[5]'])
      and member(T[7] mod 3, [0,'T[7]'])
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jun 16 2025
  • Mathematica
    pdcQ[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&IntegerQ[ Surd[ Times@@idn,3]]]; Select[Range[1000],pdcQ] (* Harvey P. Dale, Aug 25 2017 *)
  • PARI
    s=[]; for(n=1, 1000, t=eval(Vec(Str(n))); d=prod(i=1, #t, t[i]); if(d>0 && ispower(d, 3), s=concat(s, n))); s \\ Colin Barker, Feb 17 2014
  • Python
    def DigitProd(x):
      total = 1
      for i in str(x):
        total *= int(i)
      return total
    def Cube(x):
      for n in range(1,10**3):
        if DigitProd(x) == n**3:
          return True
        if DigitProd(x) < n**3:
          return False
      return False
    x = 1
    while x < 1000:
      if Cube(x):
        print(x)
      x += 1
    
  • Python
    from math import prod
    from sympy import integer_nthroot
    def ok(n): return (p:=prod(map(int, str(n)))) > 0 and integer_nthroot(p, 3)[1]
    print([k for k in range(10**3) if ok(k)]) # Michael S. Branicky, Jun 16 2025
    

Formula

There are between 9^(k-6) and 9^k k-digit members of this sequence, so a(n) >> n^1.04 and in particular this sequence has density 0. - Charles R Greathouse IV, Feb 21 2014

Extensions

Name edited by Michel Marcus, Jun 16 2025