cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A237517 Pisano period of n^2 divided by Pisano period of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 1, 13, 7, 15, 16, 17, 9, 19, 10, 21, 11, 23, 4, 25, 13, 27, 7, 29, 5, 31, 32, 33, 17, 35, 9, 37, 19, 39, 40, 41, 7, 43, 44, 45, 23, 47, 16, 49, 25, 17, 26, 53, 27, 55, 14, 19, 29, 59, 5, 61, 31, 63, 64, 65, 11, 67, 34, 23
Offset: 1

Views

Author

Keywords

Comments

For all n, a(n) | n.
Conjecture (Saha & Karthik): a(n) = 1 only for n = 1, 6, and 12.

Crossrefs

Programs

  • Mathematica
    pp[1] = 1; pp[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[Fibonacci[k+1], n] == 1, Return[k]]];
    a[n_] := pp[n^2]/pp[n];
    Array[a, 100] (* Jean-François Alcover, Dec 04 2018 *)
  • PARI
    fibmod(n,m)=((Mod([1,1;1,0],m))^n)[1,2]
    entry_p(p)=my(k=1,c=Mod(1,p),o); while(c,[o,c]=[c,c+o];k++); k
    entry(n)=if(n==1,return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i,1]>1e14,entry_p(f[i,1]^f[i,2]), entry_p(f[i,1])*f[i,1]^(f[i,2] - 1))); if(f[1,1]==2&&f[1,2]>1, v[1]=3<
    				

A271782 Smallest n-Wall-Sun-Sun prime.

Original entry on oeis.org

13, 241, 2, 3, 191, 5, 2, 3, 2683
Offset: 2

Views

Author

Felix Fröhlich, Apr 18 2016

Keywords

Comments

A prime p is a k-Wall-Sun-Sun prime iff p^2 divides F_k(pi_k(p)), where F_k(n) is the k-Fibonacci numbers, i.e., a Lucas sequence of first kind with (P,Q) = (k,-1), and pi_k(p) is the Pisano period of k-Fibonacci numbers modulo p (cf. A001175, A175181-A175185).
For prime p > 2 not dividing k^2 + 4, it is a k-Wall-Sun-Sun prime iff p^2 | F_k(p-((k^2+4)/p)), where ((k^2+4)/p) is the Kronecker symbol.
a(1) would be the smallest Wall-Sun-Sun prime whose existence is an open question.
a(12)..a(16) = 2, 3, 3, 29, 2. a(18)..a(33) = 3, 11, 2, 23, 3, 3, 2, 5, 79, 3, 2, 7, 23, 3, 2, 239. a(36)..a(38) = 2, 7, 17. a(40), a(41) = 2, 3. a(43)..a(46) = 5, 2, 3, 41. - R. J. Mathar, Apr 22 2016
a(17) = 1192625911, a(35) = 153794959, a(39) = 30132289567, a(47)..a(50) = 139703, 2, 3, 3. If they exist, a(11), a(34), a(42) are greater than 10^12. - Max Alekseyev, Apr 26 2016
Column k = 1 of table T(n, k) of k-th n-Wall-Sun-Sun prime (that table is not yet in the OEIS as a sequence). - Felix Fröhlich, Apr 25 2016
From Richard N. Smith, Jul 16 2019: (Start)
a(n) = 2 if and only if n is divisible by 4.
a(n) = 3 if and only if n == 5, 9, 13, 14, 18, 22, 23, 27, 31 (mod 36). (End)

Crossrefs

Programs

  • PARI
    A271782(k) = forprime(p=2,10^8, if( (([0,1;1,k]*Mod(1,p^2))^(p-kronecker(k^2+4,p)))[1,2]==0, return(p);); ); \\ Max Alekseyev, Apr 22 2016, corrected by Richard N. Smith, Jul 16 2019 to include p=2 and p divides k^2+4

Formula

a(4n) = 2.

Extensions

Edited by Max Alekseyev, Apr 25 2016

A237836 Pisano period of n^2.

Original entry on oeis.org

1, 6, 24, 24, 100, 24, 112, 96, 216, 300, 110, 24, 364, 336, 600, 384, 612, 216, 342, 600, 336, 330, 1104, 96, 2500, 1092, 1944, 336, 406, 600, 930, 1536, 1320, 612, 2800, 216, 2812, 342, 2184, 2400, 1640, 336, 3784, 1320, 5400, 1104, 1504, 384, 5488, 7500
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
    entry_p(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, c+o]; k++); k
    entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entry_p(f[i, 1]^f[i, 2]), entry_p(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<
    				

Formula

a(n) = A001175(n^2).
Showing 1-3 of 3 results.