A236302 Primes p such that p+8, p+86, p+864 are prime.
23, 743, 983, 1163, 1373, 1613, 2663, 4013, 4643, 6113, 6863, 7583, 7673, 8513, 10313, 10853, 11243, 12503, 12713, 15233, 15263, 25733, 25763, 28703, 39623, 40763, 42743, 46133, 54623, 56093, 61643, 63353, 65003, 67733, 68813, 70373, 70913, 71933, 78893, 86453
Offset: 1
Keywords
Examples
a(1) = 23 is a prime: 23+8 = 31, 23+86 = 109 and 23+864 = 887 are also prime. a(2) = 743 is a prime: 743+8 = 751, 743+86 = 829 and 743+864 = 1607 are also prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..4796
Programs
-
Maple
KD:= proc() local a,b,d,e,f; a:= ithprime(n); b:=a+8;d:=a+86;e:=a+864; if isprime(b)and isprime(d)and isprime(e) then return (a) :fi; end: seq(KD(), n=1..15000);
-
Mathematica
KD = {}; Do[p = Prime[n];If[PrimeQ[p + 8] && PrimeQ[p + 86] && PrimeQ[p + 864],AppendTo[KD, p]], {n, 15000}]; KD c=0; p=Prime[n]; Do[If[PrimeQ[p+8]&&PrimeQ[p+86]&&PrimeQ[p+864],c=c+1;Print[c," ",p]], {n,1,5*10^6}]; (*b-file*)
-
PARI
s=[]; forprime(p=2, 90000, if(isprime(p+8) && isprime(p+86) && isprime(p+864), s=concat(s, p))); s \\ Colin Barker, Apr 21 2014
Comments