A237913 Smallest number m > 1 (not ending in a 0) such that m and the digit reversal of m have n prime factors (counted with multiplicity). Palindromes are included.
2, 4, 8, 88, 252, 2576, 21708, 2112, 4224, 8448, 44544, 48384, 2977792, 21989376, 405504, 4091904, 441606144, 405909504, 886898688, 677707776, 4285005824, 276486684672, 21128282112, 633498894336, 2701312131072, 6739855589376, 29142024192, 65892155129856, 4815463645184, 445488555884544
Offset: 1
Examples
252 is the smallest number such that 252 and its reverse (also 252) have 5 prime factors (2*2*3*3*7). So, a(5) = 252. 2576 is the smallest number such that 2576 and its reverse (6752) have 6 prime factors (2*2*2*2*7*23 and 2*2*2*2*2*211, respectively). So a(6) = 2576.
Programs
-
Python
import sympy from sympy import factorint def rev(x): rev = '' for i in str(x): rev = i + rev return int(rev) def RevFact(x): n = 2 while n < 10**8: if n % 10 != 0: if sum(list(factorint(n).values())) == x: if sum(list(factorint(rev(n)).values())) == x: return n else: n += 1 else: n += 1 else: n += 1 x = 1 while x < 100: print(RevFact(x)) x += 1
Extensions
a(17)-a(21) from Giovanni Resta, Feb 23 2014
a(22)-a(30) from Max Alekseyev, Feb 08 2024