cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A237912 Smallest number m (not ending in a 0) such that m and its digit reversal A004086(m) both have n prime factors (counted with multiplicity).

Original entry on oeis.org

13, 15, 117, 126, 1386, 2576, 21708, 25515, 21168, 46848, 295245, 2937856, 6351048, 21989376, 217340928, 2154281472, 2196652032, 21120051456, 21122906112, 40915058688, 274148425728, 2150086519296, 2707602702336, 6167442456576, 21907217055744, 29798871072768, 420127895977984
Offset: 1

Views

Author

Derek Orr, Feb 15 2014

Keywords

Comments

Palindromes are not included in this sequence since the reverse of a palindrome is the same number. See A076886 and A237913.

Examples

			13 and 31 are both prime so a(1) = 13.
15 and 51 have two prime factors (3*5 and 3*17 respectively), so a(2) = 15.
		

Crossrefs

Programs

  • Python
    import sympy
    from sympy import factorint
    def rev(x):
      rev = ''
      for i in str(x):
        rev = i + rev
      return int(rev)
    def RevFact(x):
      n = 1
      while n < 10**8:
        if rev(n) != n:
          if n % 10 != 0:
            if sum(list(factorint(n).values())) == x:
              if sum(list(factorint(rev(n)).values())) == x:
                return n
              else:
                n += 1
            else:
              n += 1
          else:
            n += 1
        else:
          n += 1
    x = 1
    while x < 100:
      print(RevFact(x))
      x += 1

Extensions

a(15)-a(21) from Giovanni Resta, Feb 23 2014
a(22)-a(27) from Max Alekseyev, Feb 07 2024

A239697 Smallest m such that m and reverse(m) each have n (not necessarily distinct) prime factors.

Original entry on oeis.org

2, 4, 8, 88, 252, 2576, 8820, 2112, 4224, 8448, 44544, 48384, 846720, 4078080, 405504, 4091904, 441606144, 405909504, 886898688, 677707776, 4285005824, 63769149440, 21128282112, 633498894336, 2701312131072, 6739855589376, 29142024192, 65892155129856, 4815463645184, 445488555884544, 23088546155855872
Offset: 1

Views

Author

Derek Orr, Mar 24 2014

Keywords

Comments

For all terms thus far, both m and reverse(m) are even.
a(24) > 10^11. - Giovanni Resta, Mar 31 2014

Examples

			2576 = 2*2*2*2*23*7 (6 factors)
6752 = 2*2*2*2*2*211 (6 factors)
Since 2576 is the smallest number with this property, a(6) = 2576.
		

Crossrefs

Programs

  • Maple
    A239697 := proc(n)
        local a;
        for a from 1 do
            if numtheory[bigomega](a) = n then
                if numtheory[bigomega](digrev(a)) =n then
                    return a;
                end if;
            end if;
        end do:
    end proc: # R. J. Mathar, Apr 04 2014
  • Python
    import sympy
    from sympy import factorint
    from sympy import primorial
    def Rev(x):
      rev = ''
      for i in str(x):
        rev = i + rev
      return int(rev)
    def RevFact(x):
      n = 2
      while n <= primorial(x):
        if sum(list(factorint(n).values())) == x:
          if sum(list(factorint(Rev(n)).values())) == x:
            return n
          else:
            n += 1
        else:
          n += 1
    x = 1
    while x < 50:
      print(RevFact(x))
      x += 1

Formula

{min m: A001222(m) = A001222(A004086(m))}. - R. J. Mathar, Apr 04 2014

Extensions

a(17)-a(23) from Giovanni Resta, Mar 31 2014
a(24)-a(31) from David A. Corneth, Oct 03 2020
Showing 1-2 of 2 results.