A238012 Number A(n,k) of partitions of k^n into parts that are at most n with at least one part of each size; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 4, 2, 0, 0, 0, 1, 7, 48, 9, 0, 0, 0, 1, 12, 310, 3042, 119, 0, 0, 0, 1, 17, 1240, 109809, 1067474, 4935, 0, 0, 0, 1, 24, 3781, 1655004, 370702459, 2215932130, 596763, 0, 0, 0, 1, 31, 9633, 14942231, 32796849930, 13173778523786, 29012104252380, 211517867, 0, 0
Offset: 0
Examples
Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, ... 0, 1, 1, 1, 1, 1, ... 0, 0, 1, 4, 7, 12, ... 0, 0, 2, 48, 310, 1240, ... 0, 0, 9, 3042, 109809, 1655004, ... 0, 0, 119, 1067474, 370702459, 32796849930, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..43, flattened
- A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz), arXiv:1108.4391 [math.CO], 2011.
Crossrefs
Programs
-
Mathematica
A[0, 0] = 0; A[n_, k_] := SeriesCoefficient[Product[1/(1-x^j), {j, 1, n}], {x, 0, k^n - n(n+1)/2}]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Aug 18 2018, after Alois P. Heinz *)
Formula
A(n,k) = [x^(k^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j).
Comments