A238010
Number A(n,k) of partitions of k^n into parts that are at most n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 5, 10, 1, 1, 0, 1, 9, 75, 64, 1, 1, 0, 1, 13, 374, 4410, 831, 1, 1, 0, 1, 19, 1365, 123464, 1366617, 26207, 1, 1, 0, 1, 25, 3997, 1736385, 393073019, 2559274110, 2239706, 1, 1
Offset: 0
A(3,2) = 10: 332, 2222, 3221, 3311, 22211, 32111, 221111, 311111, 2111111, 11111111.
A(2,3) = 5: 22221, 222111, 2211111, 21111111, 111111111.
A(2,4) = 9: 22222222, 222222211, 2222221111, 22222111111, 222211111111, 2221111111111, 22111111111111, 211111111111111, 1111111111111111.
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 3, 5, 9, 13, ...
1, 1, 10, 75, 374, 1365, ...
1, 1, 64, 4410, 123464, 1736385, ...
1, 1, 831, 1366617, 393073019, 33432635477, ...
Columns k=0+1,2-10 give:
A057427,
A237998,
A238560,
A238561,
A238562,
A238563,
A238564,
A238565,
A238566,
A238567.
-
A[n_, k_] := SeriesCoefficient[Product[1/(1-x^j), {j, 1, n}], {x, 0, k^n}]; A[0, 0] = 0; Table[A[n-k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Feb 17 2017 *)
A237999
Number of partitions of 2^n into parts that are at most n with at least one part of each size.
Original entry on oeis.org
0, 1, 1, 2, 9, 119, 4935, 596763, 211517867, 224663223092, 734961197081208, 7614278809664610952, 256261752606028225485183, 28642174350851846128820426827, 10830277060032417592098008847162727, 14068379226083299071248895931891435683229
Offset: 0
a(1) = 1: 11.
a(2) = 1: 211.
a(3) = 2: 3221, 32111.
a(4) = 9: 433321, 443221, 4322221, 4332211, 4432111, 43222111, 43321111, 432211111, 4321111111.
-
a[n_] := SeriesCoefficient[Product[1/(1 - x^j), {j, 1, n}], {x, 0, 2^n - n*(n + 1)/2}];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 15}] (* Jean-François Alcover, Aug 19 2018 *)
A238001
Number of partitions of n^n into parts that are at most n with at least one part of each size.
Original entry on oeis.org
0, 1, 1, 48, 109809, 32796849930, 2555847904495965819, 85962759806610904434664386174, 1841132100297745277187328924904656111127054, 34687813181057391872792859998288408847592250236051615502024
Offset: 0
a(1) = 1: 1.
a(2) = 1: 211.
a(3) = 48: 3333333321, ..., 321111111111111111111111.
-
maxExponent = 50; a[0] = 0; a[1] = 1;
a[n_] := Module[{}, aparts = List @@ (Product[1/(1 - x^j), {j, 1, n}] // Apart); cc = aparts + O[x]^maxExponent // CoefficientList[#, x]&; f[k_] = Total[FindSequenceFunction[#, k]& /@ cc]; f[n^n-n(n+1)/2 + 1] // Round];
Table[an = a[n]; Print[n, " ", an]; an, {n, 0, 9}] (* Jean-François Alcover, Nov 15 2018 *)
A239168
Number of partitions of 9^n into parts that are at most n with at least one part of each size.
Original entry on oeis.org
0, 1, 40, 43923, 1956835062, 4219267293723828, 490589938553810921101750, 3299246284983094033572923631218500, 1347808520417651710823757078029174789058075682, 34687813181057391872792859998288408847592250236051615502024
Offset: 0
A239162
Number of partitions of 3^n into parts that are at most n with at least one part of each size.
Original entry on oeis.org
0, 1, 4, 48, 3042, 1067474, 2215932130, 29012104252380, 2526293243761311036, 1525710603023191548743988, 6600334932211428773703751221040, 209705652574790086852527310591449309624, 49907101066058865036206450041083799915221352487
Offset: 0
a(2) = 4: 22221, 222111, 2211111, 21111111.
-
maxExponent = 30; a[0] = 0; a[1] = 1;
a[n_] := Module[{}, aparts = List @@ (Product[1/(1 - x^j), {j, 1, n}] // Apart); cc = aparts + O[x]^maxExponent // CoefficientList[#, x]&; f[k_] = Total[FindSequenceFunction[#, k]& /@ cc]; f[3^n - n(n+1)/2 + 1] // Round]; Table[an = a[n];
Print[n, " ", an]; an, {n, 0, 12}] (* Jean-François Alcover, Nov 15 2018 *)
A239163
Number of partitions of 4^n into parts that are at most n with at least one part of each size.
Original entry on oeis.org
0, 1, 7, 310, 109809, 370702459, 13173778523786, 5303087097326728307, 25501946239758780918956349, 1523132187565775833398409415522245, 1163511401871888391788752975911167467265905, 11631778554448496258128131825307023131265496068454454
Offset: 0
a(2) = 7: 222222211, 2222221111, 22222111111, 222211111111, 2221111111111, 22111111111111, 211111111111111.
-
maxExponent = 40; a[0] = 0; a[1] = 1;
a[n_] := Module[{}, aparts = List @@ (Product[1/(1 - x^j), {j, 1, n}] // Apart); cc = aparts + O[x]^maxExponent // CoefficientList[#, x]&; f[k_] = Total[FindSequenceFunction[#, k]& /@ cc]; f[4^n-n(n+1)/2 + 1] // Round];
Table[an = a[n]; Print[n, " ", an]; an, {n, 0, 11}] (* Jean-François Alcover, Nov 15 2018 *)
A239164
Number of partitions of 5^n into parts that are at most n with at least one part of each size.
Original entry on oeis.org
0, 1, 12, 1240, 1655004, 32796849930, 10743023668660275, 62590747974586286694030, 6826987264035710020018176749475, 14471606032117455546329821353159274382372, 613427607589897771307393494301176209875530879140211
Offset: 0
a(2) = 12: 2222222222221, 22222222222111, 222222222211111, 2222222221111111, 22222222111111111, 222222211111111111, 2222221111111111111, 22222111111111111111, 222211111111111111111, 2221111111111111111111, 22111111111111111111111, 211111111111111111111111.
-
maxExponent = 45; a[0] = 0; a[1] = 1;
a[n_] := Module[{}, aparts = List @@ (Product[1/(1 - x^j), {j, 1, n}] // Apart); cc = aparts + O[x]^maxExponent // CoefficientList[#, x]&; f[k_] = Total[FindSequenceFunction[#, k]& /@ cc];f[5^n - n(n+1)/2 + 1] // Round];
Table[an = a[n]; Print[n, " ", an]; an, {n, 0, 10}] (* Jean-François Alcover, Nov 15 2018 *)
A239165
Number of partitions of 6^n into parts that are at most n with at least one part of each size.
Original entry on oeis.org
0, 1, 17, 3781, 14942231, 1264608203048, 2555847904495965819, 132574244496779071303074376, 185560862224740635595130202984468935, 7271076505438083132065943012753686950455454055, 8205115354631567886718289443554629632451344416164686337673
Offset: 0
-
maxExponent = 50; a[0] = 0; a[1] = 1;
a[n_] := Module[{}, aparts = List @@ (Product[1/(1 - x^j), {j, 1, n}] // Apart); cc = aparts + O[x]^maxExponent // CoefficientList[#, x]&; f[k_] = Total[FindSequenceFunction[#, k]& /@ cc]; f[6^n-n(n+1)/2+1] // Round];
Table[an = a[n]; Print[n, " ", an]; an, {n, 0, 10}] (* Jean-François Alcover, Nov 15 2018 *)
A239166
Number of partitions of 7^n into parts that are at most n with at least one part of each size.
Original entry on oeis.org
0, 1, 24, 9633, 95520600, 27656224652420, 260755601247189041231, 85962759806610904434664386174, 1041189281477724923668568740931602845066, 480588514551700434552887677121496205669535589365780, 8695551969224574889031840216144104978715552114947924501069394617
Offset: 0
A239167
Number of partitions of 8^n into parts that are at most n with at least one part of each size.
Original entry on oeis.org
0, 1, 31, 21590, 475473009, 399953578562811, 14325140434481169064975, 23442235543128214521886383970201, 1841132100297745277187328924904656111127054, 7197719612276659958196058354497691622150052900765626132
Offset: 0
Showing 1-10 of 11 results.
Comments