cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238015 Denominator of (2*n+1)!*8*Bernoulli(2*n,1/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Robert Israel, Feb 17 2014

Keywords

Comments

It appears that a(n) is 1 for n in A095736, 2 for n in A014312, 4 for n in A014313, 8 for n in A023688, 16 for n in A023689, 32 for n in A023690, 64 for n in A023691. - Michel Marcus, Feb 18 2014

Examples

			For n=15, (2*15+1)!*8*Bernoulli(2*15,1/2) = -79147239268966167007717425917182573906640625/2 so a(15) = 2.
		

Crossrefs

Cf. A033473.

Programs

  • Maple
    seq(denom((2*n+1)!*8*bernoulli(2*n,1/2)), n=0 .. 100);
  • Mathematica
    Table[Denominator[(2 n + 1)! 8 BernoulliB[2 n, 1/2]], {n, 0, 200}] (* Vincenzo Librandi, Feb 18 2014 *)