cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238083 Primes p such that p^4 - p^3 + 1 is also prime.

Original entry on oeis.org

67, 139, 337, 409, 577, 607, 631, 1297, 1321, 1429, 1459, 1549, 1627, 2377, 2557, 2767, 2851, 2917, 3001, 3187, 3319, 3499, 4027, 4099, 4621, 4861, 4969, 5059, 5431, 5449, 5581, 5827, 5857, 6007, 6037, 6379, 6481, 6781, 6997, 7411, 7927, 8089, 8191, 8311
Offset: 1

Views

Author

K. D. Bajpai, Feb 17 2014

Keywords

Examples

			67 is in the sequence because 67 is prime and 67^4 - 67^3 + 1 = 19850359 is also prime.
337 is in the sequence because 337 is prime and 337^4 - 337^3 + 1 = 12859645009 is also prime.
		

Crossrefs

Programs

  • Maple
    KD := proc() local a,b;  a:= ithprime(n);  b:= a^4 - a^3 + 1;  if isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..2000);
  • Mathematica
    c=0; a=2; Do[k=Prime[n];  If[PrimeQ[k^4-k^3+1], c=c+1;  Print[c," ",k]],    {n,1,100000}];
    Select[Prime[Range[1100]],PrimeQ[#^4-#^3+1]&] (* Harvey P. Dale, Jun 11 2025 *)
  • PARI
    isok(p) = isprime(p) && isprime(p^4 - p^3 + 1); \\ Michel Marcus, Feb 27 2014

Extensions

More terms from Michel Marcus, Feb 27 2014