A238083 Primes p such that p^4 - p^3 + 1 is also prime.
67, 139, 337, 409, 577, 607, 631, 1297, 1321, 1429, 1459, 1549, 1627, 2377, 2557, 2767, 2851, 2917, 3001, 3187, 3319, 3499, 4027, 4099, 4621, 4861, 4969, 5059, 5431, 5449, 5581, 5827, 5857, 6007, 6037, 6379, 6481, 6781, 6997, 7411, 7927, 8089, 8191, 8311
Offset: 1
Keywords
Examples
67 is in the sequence because 67 is prime and 67^4 - 67^3 + 1 = 19850359 is also prime. 337 is in the sequence because 337 is prime and 337^4 - 337^3 + 1 = 12859645009 is also prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..3409
Programs
-
Maple
KD := proc() local a,b; a:= ithprime(n); b:= a^4 - a^3 + 1; if isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..2000);
-
Mathematica
c=0; a=2; Do[k=Prime[n]; If[PrimeQ[k^4-k^3+1], c=c+1; Print[c," ",k]], {n,1,100000}]; Select[Prime[Range[1100]],PrimeQ[#^4-#^3+1]&] (* Harvey P. Dale, Jun 11 2025 *)
-
PARI
isok(p) = isprime(p) && isprime(p^4 - p^3 + 1); \\ Michel Marcus, Feb 27 2014
Extensions
More terms from Michel Marcus, Feb 27 2014