cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238112 Expansion of g.f.: (1-5*x+2*x^2+(2*x-1)*sqrt(x^2-6*x+1))/(4*x).

Original entry on oeis.org

0, 0, 1, 5, 23, 107, 509, 2473, 12235, 61463, 312761, 1609005, 8355423, 43741635, 230614773, 1223414481, 6525975315, 34981856303, 188341400945, 1018043304661, 5522585343271, 30056208280091, 164066282507501, 898029800045945, 4927810473507803, 27103503645610567, 149393131346947369, 825093297608481533
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2014

Keywords

Comments

Number of bracketed decomposable averaging words of degree n.
a(n) is the number of dissections of a convex (n+2)-sided polygon by nonintersecting diagonals such that at least one of the dividing diagonals passes through a chosen vertex. - Muhammed Sefa Saydam, Mar 01 2025

Examples

			From _Peter Bala_, Jan 31 2020: (Start)
The sequence may be obtained from the matrix multiplication of A132372 and the sequence of squares A000290:
   / 1           \   / 1 \       /  1 \
  |  1   1        | |  4  |     |   5  |
  |  2   3  1     | |  9  |  =  |  23  |
  |  6  10  5  1  | | 16  |     | 107  |
  | ...           | | ... |     | ...  | (End)
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); [0,0] cat Coefficients(R!( (1-5*x+2*x^2+(2*x-1)*Sqrt(x^2-6*x+1))/(4*x))); // Marius A. Burtea, Feb 02 2020
  • Maple
    CD := n -> LegendreP(n,3): a := n -> ((3*n^2+3*n-6)*CD(n+2) + (34*n^2+52*n+18)* CD(n) + (20-23*n^2-21*n)*CD(n+1))/(4*(n^3-n)):
    [0,0,seq(a(n), n=2..27)]; # Peter Luschny, Feb 01 2020
  • Mathematica
    Join[{0, 0},Table[1/4(2GegenbauerC[n,-(1/2),3]-GegenbauerC[1+n,-(1/2),3]),{n, 2, 30}]] (* Benedict W. J. Irwin, Sep 26 2016 *)
    CoefficientList[Series[(1-5*x+2*x^2+(2*x-1)*Sqrt[x^2-6*x+1])/(4*x), {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 27 2016 *)
  • PARI
    my(x='x+O('x^50)); concat([0,0], Vec((1-5*x+2*x^2+(2*x-1)*sqrt(x^2-6*x+1))/(4*x))) \\ G. C. Greubel, Jun 01 2017
    

Formula

a(n) ~ (1+2*sqrt(2))* sqrt(3*sqrt(2)-4) * (3+2*sqrt(2))^n / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 05 2014
a(n) = (2*GegenbauerC(n,-1/2,3)-GegenbauerC(n+1,-1/2,3))/4, n>1. - Benedict W. J. Irwin, Sep 26 2016
D-finite with recurrence: (n+1)*a(n) +(-8*n+5)*a(n-1) +(13*n-32)*a(n-2) +2*(-n+4)*a(n-3)=0. - R. J. Mathar, Jan 25 2020
From Peter Bala, Jan 31 2019: (Start)
O.g.f.: A(x) = x^2*(1 + x*S(x))^2/(1 - x*S(x))^3 = x^2*S(x)^2/(1 - x*S(x)), where S(x) = 1 + 2*x + 6*x^2 + 22*x^3 + ... is the o.g.f. for the large Schröder numbers A006318.
Modulo offset differences, the sequence is given by the matrix-by-vector product A132372 * A000290 (regarded as a column vector). See the example below. (End)
a(n) = ((3*n^2+3*n-6)*CD(n+2) + (34*n^2+52*n+18)*CD(n) + (20-23*n^2-21*n)* CD(n+1))/(4*(n^3-n)) where CD(n) are the central Delannoy numbers A001850, for n >= 2. - Peter Luschny, Feb 01 2020
From Peter Bala, Feb 20 2020: (Start)
a(n) = (1/2)*( A006318(n) - 2*A006318(n-1) ) for n >= 1.
O.g.f.: A(x) = (1/2)*( (1 - 2*x)*S(x) - 1 ), where S(x) is the o.g.f. for the large Schröder numbers A006318. (End)
a(n) = A001003(n-1) + 2*Sum_{k=1..n-2} ( A001003(k) * A001003 (n-k-1) ) for n >= 2. - Muhammed Sefa Saydam, Mar 01 2025