cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238124 Number of ballot sequences of length n having exactly 1 largest part.

Original entry on oeis.org

0, 1, 1, 3, 7, 20, 56, 182, 589, 2088, 7522, 28820, 113092, 464477, 1955760, 8541860, 38215077, 176316928, 832181774, 4033814912, 19973824386, 101257416701, 523648869394, 2765873334372, 14883594433742, 81646343582385, 455752361294076, 2589414185398032
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 21 2014

Keywords

Comments

Also number of standard Young tableaux with last row of length 1.
Column k=1 of A238123.
With different offset column k=2 of A238750.

Examples

			The a(5)=20 ballot sequences of length 5 with 1 maximal element are (dots for zeros):
01:  [ . . . . 1 ]
02:  [ . . . 1 . ]
03:  [ . . . 1 2 ]
04:  [ . . 1 . . ]
05:  [ . . 1 . 2 ]
06:  [ . . 1 1 2 ]
07:  [ . . 1 2 . ]
08:  [ . . 1 2 1 ]
09:  [ . . 1 2 3 ]
10:  [ . 1 . . . ]
11:  [ . 1 . . 2 ]
12:  [ . 1 . 1 2 ]
13:  [ . 1 . 2 . ]
14:  [ . 1 . 2 1 ]
15:  [ . 1 . 2 3 ]
16:  [ . 1 2 . . ]
17:  [ . 1 2 . 1 ]
18:  [ . 1 2 . 3 ]
19:  [ . 1 2 3 . ]
20:  [ . 1 2 3 4 ]
		

Crossrefs

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
           add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) `if`(n=0, 0, `if`(i=1, h([l[], 1$n]),
           add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
        end:
    a:= n-> g(n, n, []):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, l_List] := b[n, l] = If[n < 1, x^l[[-1]], b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[0] = 0; a[n_] := Coefficient[b[n - 1, {1}], x, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 10 2015, after A238123 *)
  • PARI
    A238124(n)=A238123(n,1) \\ M. F. Hasler, Jun 03 2018