A238201 Primes p such that numerator(H(floor(p/6))) == 0 (mod p), where H(k) is the k-th harmonic number.
2, 3, 5, 61, 1680023, 7308036881
Offset: 1
Links
- Karl Dilcher and Ladislav Skula, A new criterion for the first case of Fermat’s Last Theorem, Math. Comp. 64 (1995) 363-392.
- John Blythe Dobson, Extended calculations of a special harmonic number, arxiv 1402.5680 [math.NT], 2014-2015.
- John Blythe Dobson, Calculations relating to some special Harmonic numbers, arXiv:1501.05075 [math.NT], 2015.
- Richard Fischer, Fermatquotient B^(P-1) == 1 (mod P^2).
- Emma Lehmer, On Congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938) 350-360.
- H. Schwindt, Three summation criteria for Fermat’s Last Theorem, Math. Comp. 40 (1983) 715-716.
Programs
-
Mathematica
Select[Prime[Range[1000]], Mod[Numerator[HarmonicNumber[Floor[#/6]]], #] == 0 &] Select[Prime[Range[1000]], Divisible[Numerator[HarmonicNumber[Quotient[#, 6]]], #] &] (* Jan Mangaldan, May 07 2014 *)
-
PARI
is(n)=my(H=sum(i=1,n\6,1/i)); numerator(H)%n==0 && isprime(n) \\ Charles R Greathouse IV, Mar 02 2014
Comments