A238212 The total number of 5's in all partitions of n into an odd number of distinct parts.
0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 1, 2, 2, 3, 5, 4, 5, 7, 8, 10, 11, 13, 16, 19, 23, 26, 31, 36, 42, 49, 56, 65, 75, 86, 100, 114, 130, 149, 170, 193, 220, 250, 283, 321, 363, 410, 463, 522, 587, 660, 742, 832, 933, 1045, 1168, 1307, 1459, 1627, 1814, 2020
Offset: 0
Keywords
Examples
a(12) = 2 because the partitions in question are: 6+5+1, 5+4+3.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
tn5[n_]:=Module[{op=IntegerPartitions[n],m},m=Flatten[Select[op,OddQ[ Length[#]] && Length[#]==Length[Union[#]]&]];Count[m,5]]; Array[tn5,60,0] (* Harvey P. Dale, Feb 06 2015 *) nmax = 100; With[{k=5}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] + x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)
Formula
G.f.: (1/2)*(x^5/(1+x^5))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^5/(1-x^5))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025
Extensions
Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020
Comments