A238215 The total number of 1's in all partitions of n into an even number of distinct parts.
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 18, 21, 24, 28, 33, 38, 44, 51, 59, 68, 79, 90, 104, 119, 136, 156, 178, 202, 230, 261, 296, 335, 379, 427, 482, 543, 610, 686, 770, 863, 967, 1082, 1209, 1351, 1508, 1681, 1873, 2085, 2318, 2577
Offset: 0
Keywords
Examples
a(12) = 3 because the partitions in question are: 11+1, 6+3+2+1, 5+4+2+1.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i>n, 0, b(n, i+1, t)+b(n-i, i+1, 1-t))) end: a:= n-> b(n-1, 2, 0): seq(a(n), n=0..100); # Alois P. Heinz, May 01 2020
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i + 1, t] + b[n - i, i + 1, 1 - t]]]; a[n_] := b[n - 1, 2, 0]; a /@ Range[0, 100] (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
-
PARI
seq(n)={my(A=O(x^n)); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x)) - eta(x + A)/(1-x))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020
Formula
G.f.: (1/2)*(x/(1+x))*(Product_{n>=1} 1 + x^n) - (1/2)*(x/(1-x))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Nov 07 2024
Extensions
Terms a(51) and beyond from Andrew Howroyd, May 01 2020
Comments