cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238215 The total number of 1's in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 18, 21, 24, 28, 33, 38, 44, 51, 59, 68, 79, 90, 104, 119, 136, 156, 178, 202, 230, 261, 296, 335, 379, 427, 482, 543, 610, 686, 770, 863, 967, 1082, 1209, 1351, 1508, 1681, 1873, 2085, 2318, 2577
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(12) = 3 because the partitions in question are: 11+1, 6+3+2+1, 5+4+2+1.
		

Crossrefs

Column k=1 of A238451.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t,
         `if`(i>n, 0, b(n, i+1, t)+b(n-i, i+1, 1-t)))
        end:
    a:= n-> b(n-1, 2, 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 01 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i + 1, t] + b[n - i, i + 1, 1 - t]]];
    a[n_] := b[n - 1, 2, 0];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
  • PARI
    seq(n)={my(A=O(x^n)); Vec(x*(eta(x^2 + A)/(eta(x + A)*(1+x)) - eta(x + A)/(1-x))/2, -(n+1))} \\ Andrew Howroyd, May 01 2020

Formula

a(n) = Sum_{j=1..round(n/2)} A067659(n-(2*j-1)) - Sum_{j=1..floor(n/2)} A067661(n-2*j).
G.f.: (1/2)*(x/(1+x))*(Product_{n>=1} 1 + x^n) - (1/2)*(x/(1-x))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Nov 07 2024

Extensions

Terms a(51) and beyond from Andrew Howroyd, May 01 2020