A238221 The total number of 6's in all partitions of n into an even number of distinct parts.
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 6, 7, 9, 11, 12, 14, 17, 20, 24, 28, 32, 37, 44, 51, 59, 69, 78, 90, 104, 119, 136, 156, 177, 202, 230, 261, 296, 336, 379, 428, 483, 544, 612, 689, 773, 867, 972, 1088, 1217, 1360, 1518, 1693, 1887
Offset: 0
Keywords
Examples
a(13) = 2 because the partitions in question are: 7+6, 6+4+2+1.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
endpQ[n_]:=Module[{len=Length[n]},EvenQ[len]&&len==Length[Union[n]]]; Table[ Count[Flatten[Select[IntegerPartitions[i],endpQ]],6],{i,0,50}] (* Harvey P. Dale, Mar 03 2014 *) nmax = 100; With[{k=6}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] - x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)
Formula
G.f.: (1/2)*(x^6/(1+x^6))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^6/(1-x^6))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025
Extensions
Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020
Comments