A238279 Triangle read by rows: T(n,k) is the number of compositions of n into nonzero parts with k parts directly followed by a different part, n>=0, 0<=k<=A004523(n-1).
1, 1, 2, 2, 2, 3, 4, 1, 2, 10, 4, 4, 12, 14, 2, 2, 22, 29, 10, 1, 4, 26, 56, 36, 6, 3, 34, 100, 86, 31, 2, 4, 44, 148, 200, 99, 16, 1, 2, 54, 230, 374, 278, 78, 8, 6, 58, 322, 680, 654, 274, 52, 2, 2, 74, 446, 1122, 1390, 814, 225, 22, 1, 4, 88, 573, 1796, 2714, 2058, 813, 136, 10, 4, 88, 778, 2694, 4927
Offset: 0
Examples
Triangle starts: 00: 1; 01: 1; 02: 2; 03: 2, 2; 04: 3, 4, 1; 05: 2, 10, 4; 06: 4, 12, 14, 2; 07: 2, 22, 29, 10, 1; 08: 4, 26, 56, 36, 6; 09: 3, 34, 100, 86, 31, 2; 10: 4, 44, 148, 200, 99, 16, 1; 11: 2, 54, 230, 374, 278, 78, 8; 12: 6, 58, 322, 680, 654, 274, 52, 2; 13: 2, 74, 446, 1122, 1390, 814, 225, 22, 1; 14: 4, 88, 573, 1796, 2714, 2058, 813, 136, 10; 15: 4, 88, 778, 2694, 4927, 4752, 2444, 618, 77, 2; 16: 5, 110, 953, 3954, 8531, 9930, 6563, 2278, 415, 28, 1; ... Row n=5 is 2, 10, 4 because in the 16 compositions of 5 ##: [composition] no. of changes 01: [ 1 1 1 1 1 ] 0 02: [ 1 1 1 2 ] 1 03: [ 1 1 2 1 ] 2 04: [ 1 1 3 ] 1 05: [ 1 2 1 1 ] 2 06: [ 1 2 2 ] 1 07: [ 1 3 1 ] 2 08: [ 1 4 ] 1 09: [ 2 1 1 1 ] 1 10: [ 2 1 2 ] 2 11: [ 2 2 1 ] 1 12: [ 2 3 ] 1 13: [ 3 1 1 ] 1 14: [ 3 2 ] 1 15: [ 4 1 ] 1 16: [ 5 ] 0 there are 2 with no changes, 10 with one change, and 4 with two changes.
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..180, flattened
Crossrefs
Columns k=0-10 give: A000005 (for n>0), 2*A002133, A244714, A244715, A244716, A244717, A244718, A244719, A244720, A244721, A244722.
Row lengths are A004523.
Row sums are A011782.
The version counting adjacent equal parts is A106356.
The version for ascents/descents is A238343.
The version for weak ascents/descents is A333213.
Programs
-
Maple
b:= proc(n, v) option remember; `if`(n=0, 1, expand( add(b(n-i, i)*`if`(v=0 or v=i, 1, x), i=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)): seq(T(n), n=0..14);
-
Mathematica
b[n_, v_] := b[n, v] = If[n == 0, 1, Expand[Sum[b[n-i, i]*If[v == 0 || v == i, 1, x], {i, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Maple *) Table[If[n==0,1,Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Split[#]]==k+1&]]],{n,0,12},{k,0,If[n==0,0,Floor[2*(n-1)/3]]}] (* Gus Wiseman, Apr 10 2020 *)
-
PARI
T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N),h=(1+ sum(i=1,N,(x^i-y*x^i)/(1+y*x^i-x^i)))/(1-sum(i=1,N, y*x^i/(1+y*x^i-x^i)))); for(n=0,N-1, print(Vecrev(polcoeff(h,n))))} T_xy(16) \\ John Tyler Rascoe, Jul 10 2024
Formula
G.f.: A(x,y) = ( 1 + Sum_{i>0} ((x^i)*(1 - y)/(1 + y*x^i - x^i)) )/( 1 - Sum_{i>0} ((y*x^i)/(1 + y*x^i - x^i)) ). - John Tyler Rascoe, Jul 10 2024
Comments