cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238375 Row sums of triangle in A152719.

Original entry on oeis.org

1, 2, 4, 6, 11, 16, 28, 40, 69, 98, 168, 238, 407, 576, 984, 1392, 2377, 3362, 5740, 8118, 13859, 19600, 33460, 47320, 80781, 114242, 195024, 275806, 470831, 665856, 1136688, 1607520, 2744209, 3880898, 6625108, 9369318, 15994427, 22619536, 38613964, 54608392
Offset: 0

Views

Author

Philippe Deléham, Feb 25 2014

Keywords

Examples

			Triangle A152719 and row sums:
  1;  ............................. sum =  1
  1, 1;  .......................... sum =  2
  1, 2, 1;  ....................... sum =  4
  1, 2, 2,  1;  ................... sum =  6
  1, 2, 5,  2,  1;  ............... sum = 11
  1, 2, 5,  5,  2, 1;  ............ sum = 16
  1, 2, 5, 12,  5, 2, 1;  ......... sum = 28
  1, 2, 5, 12, 12, 5, 2, 1;  ...... sum = 40
		

Crossrefs

Cf. A000129, A002203, A005409, A048739, A135153 (first differences), A152719.

Programs

  • Mathematica
    Table[Sum[Fibonacci[1+Min[k, n-k], 2], {k,0,n}], {n,0,45}] (* G. C. Greubel, May 21 2021 *)
  • PARI
    my(x='x+O('x^44)); Vec((1+x)/((1-2*x^2-x^4)*(1-x))) \\ Joerg Arndt, May 22 2021
  • Sage
    def Pell(n): return n if (n<2) else 2*Pell(n-1) + Pell(n-2)
    def a(n): return sum(Pell(1+min(k, n-k)) for k  in (0..n))
    [a(n) for n in (0..45)] # G. C. Greubel, May 21 2021
    

Formula

a(n) = Sum_{k=0..n} A152719(n,k).
G.f.: (1+x)/((1-2*x^2-x^4)*(1-x)).
a(2*n) = A005409(n+2).
a(2*n+1) = 2*A048739(n).
a(n) = (-4 + 2*(1+(-1)^n)*Pell((n+4)/2) + (1-(-1)^n)*Q((n+3)/2))/4, where Pell(n) = A000129(n) and Q(n) = A002203(n). - G. C. Greubel, May 21 2021
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)+a(n-4)-a(n-5). - Wesley Ivan Hurt, May 22 2021