A238444 a(n) is the number of (not necessarily distinct) integers i!+(prime(n)-1)!/i!, i=1,2,...,prime(n)-2, which are divisible by prime(n).
0, 1, 2, 3, 3, 2, 4, 3, 7, 4, 3, 2, 2, 3, 3, 4, 7, 8, 5, 9, 4, 5, 7, 4, 4, 2, 5, 3, 4, 2, 3, 3, 6, 5, 6, 3, 2, 3, 3, 2, 3, 2, 3, 4, 2, 7, 3, 3, 7, 2, 6, 5, 2, 5, 4, 3, 4, 5, 4, 2, 3, 6, 7, 7, 2, 4, 5, 2, 3, 2, 2, 7, 3, 2, 5, 5, 6, 6, 10, 2, 5, 2, 5, 2, 5, 3, 6
Offset: 1
Keywords
Examples
Let n=4, prime(n)=7. Consider integers i!+6!/i!, i=1,2,3,4,5: 721,362,126,54,126. Among them 721,126,126 are divisible by 7. So a(4)=3.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A238444 := proc(n) local p,a,i ; p := ithprime(n) ; a := 0 ; for i from 1 to p-2 do if modp( i!+(p-1)!/i!,p)= 0 then a := a+1 ; end if; end do; a ; end proc: seq(A238444(n),n=1..20) ; # R. J. Mathar, Mar 06 2014
-
Mathematica
a[n_] := Module[{p, r}, p = Prime[n]; r = Range[p-2]; Count[r!+(p-1)!/r!, k_ /; Divisible[k, p]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 27 2014 *)
-
PARI
a(n) = sum(i=1, prime(n)-2, ((i!+(prime(n)-1)!/i!) % prime(n)) == 0); \\ Michel Marcus, Feb 27 2014
Extensions
More terms from Peter J. C. Moses, Feb 26 2014
Comments