cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238453 Triangle read by rows: T(n,k) = A001088(n)/(A001088(k)*A001088(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 4, 8, 8, 4, 1, 1, 2, 8, 8, 8, 2, 1, 1, 6, 12, 24, 24, 12, 6, 1, 1, 4, 24, 24, 48, 24, 24, 4, 1, 1, 6, 24, 72, 72, 72, 72, 24, 6, 1, 1, 4, 24, 48, 144, 72, 144, 48, 24, 4, 1, 1, 10, 40, 120, 240, 360, 360, 240, 120
Offset: 0

Views

Author

Tom Edgar, Feb 26 2014

Keywords

Comments

We assume that A001088(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with Euler's totient function A000010.
Another name might be the totienomial coefficients.

Examples

			The first five terms in Euler's totient function are 1,1,2,2,4 and so T(4,2) = 2*2*1*1/((1*1)*(1*1))=4 and T(5,3) = 4*2*2*1*1/((2*1*1)*(1*1))=8.
The triangle begins
1
1 1
1 1 1
1 2 2 1
1 2 4 2 1
1 4 8 8 4 1
1 2 8 8 8 2 1
		

Crossrefs

Programs

  • Haskell
    a238453 n k = a238453_tabl !! n !! k
    a238453_row n = a238453_tabl !! n
    a238453_tabl = [1] : f [1] a000010_list where
       f xs (z:zs) = (map (div y) $ zipWith (*) ys $ reverse ys) : f ys zs
         where ys = y : xs; y = head xs * z
    -- Reinhard Zumkeller, Feb 27 2014
    
  • Mathematica
    f[n_] := Product[EulerPhi@ k, {k, n}]; Table[f[n]/(f[k] f[n - k]), {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 19 2016 *)
  • PARI
    T(n,k)={prod(i=1, k, eulerphi(n+1-i)/eulerphi(i))} \\ Andrew Howroyd, Nov 13 2018
  • Sage
    q=100 #change q for more rows
    P=[euler_phi(i) for i in [0..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
    

Formula

T(n,k) = A001088(n)/(A001088(k)*A001088(n-k)).
T(n,k) = prod_{i=1..n} A000010(i)/(prod_{i=1..k} A000010(i)*prod_{i=1..n-k} A000010(i)).
T(n,k) = A000010(n)/n*(k/A000010(k)*T(n-1,k-1)+(n-k)/A000010(n-k)*T(n-1,k)).
T(n+1, 2) = A083542(n). - Michael Somos, Aug 26 2014
T(n,k) = Product_{i=1..k} (phi(n+1-i)/phi(i)), where phi is Euler's totient function (A000010). - Werner Schulte, Nov 14 2018